Visiting Cities Hackerrank Solution Python

HackerRank
Python
Solutions

Visiting cities hackerrank solution python is a popular problem found on the HackerRank platform, a
competitive programming website that provides coding challenges and contests for developers and
programmers. The problem typically revolves around determining the best route for visiting a set of cities
while adhering to specific constraints. This article will explore a comprehensive guide to solving this
problem using Python, including an overview of the problem statement, a breakdown of the approach to

the solution, a detailed explanation of the code, and some tips for optimizing your solution.

Understanding the Problem Statement

The visiting cities problem usually describes a scenario where you have a group of cities, each uniquely
identified by a number. You are given a start city and a destination city, and you need to find a way to
visit each city exactly once before returning to the start city. The challenge is to determine if such a route

is possible and, if so, to calculate the distance or cost of traversing that route.
Here’s a simplified version of the problem statement:
- You are given a number of cities and a set of direct paths between them, each with an associated distance.

- You need to determine if it is possible to visit all cities starting from a given city and returning to it.

- If possible, compute the minimum distance required to complete the trip.

Breaking Down the Approach

To solve the visiting cities problem effectively, we can break down the approach into several key steps:

1. Graph Representation

The cities and their connections can be represented as a graph. In this representation:

- Each city is a node.

- Each direct path between cities is an edge, with weights corresponding to the distance between the cities.

You can use a dictionary or an adjacency list to represent this graph.

2. Depth-First Search (DFS) or Backtracking

To explore all possible routes, we can use DFS or a backtracking algorithm. This approach will allow us to

traverse the graph while keeping track of visited cities and calculating the total distance traveled.

3. Checking Validity

While traversing, we need to ensure that:

- Each city is visited exactly once.

- We return to the starting city after visiting all other cities.

4. Distance Calculation

As we traverse the graph, we keep a running total of the distance traveled. At the end of the traversal, if
we have successfully visited all cities, we can compare this distance with previously calculated distances to

find the minimum.

5. Edge Cases

Consider edge cases such as:

- No paths exist between certain cities.
- More cities than paths.

- All cities are connected.

Implementing the Solution in Python

Now that we have a clear approach, let’s implement the solution in Python. Below is an example code that

demonstrates how to solve the visiting cities problem using DFS:

““python
def visitingCities(n, paths):

from collections import defaultdict

Create a graph representation using an adjacency list
graph = defaultdict(list)

for u, v, d in paths:

graph[u]append((v, d))

graph[v]append((u, d)) Since the graph is undirected

Variables to keep track of the minimum distance

min_distance = float('inf")

Function to perform DFS
def dfs(city, visited, current_distance, count):

nonlocal min_distance

If all cities have been visited and we're back to the start
if count == n and city ==
min_distance = min(min_distance, current_distance)

return

Visit adjacent cities

for neighbor, distance in graph|city]:

if not visited[neighbor|:

visited[neighbor| = True Mark as visited

dfs(neighbor, visited, current_distance + distance, count + 1)

visited[neighbor| = False Unmark after backtracking
Start DFS from the first city (0)

visited = [False| n

visited[0] = True Starting city visited

dfs(0, visited, 0, 1) Start DFS

return min_distance if min_distance != float('inf") else -1

Example usage

n = 4 Number of cities
paths = [(0, 1, 10), (1, 2, 10), (2, 3, 10), (3, 0, 10), (0, 2, 15)]

print(visitingCities(n, paths)) Output minimum distance or -1 if not possible

Code Explanation

Let’s break down the code step by step:

1. Graph Representation:
- We use a ‘defaultdict’ from the ‘collections” module to create an adjacency list for the graph. Each city

points to a list of tuples, where each tuple represents a neighboring city and the distance to it.

2. DFS Function:
- The 'dfs’ function takes the current city, a list to track visited cities, the current distance traveled, and a
count of visited cities.

- If we have visited all cities and returned to the starting point, we update the minimum distance.

3. Visiting Cities:
- We begin DFS from the starting city (city 0 in this case), marking it as visited.
- We recursively call the "dfs’ function for each unvisited neighboring city, updating the visited list

accordingly.

4. Returning the Result:
- After executing DFS, we check if we found a valid route. If ‘'min_distance remains ‘inf’, it means no

valid route exists, and we return -1.

Optimizing the Solution

While the above solution works, it may not be efficient for larger graphs due to its exponential time

complexity. To optimize:

- Memoization: Store results of previously computed states to avoid redundant calculations.

- Dynamic Programming: Implement a more sophisticated approach using dynamic programming to reduce
the state space.

- Heuristic Methods: For very large graphs, consider heuristic approaches like Genetic Algorithms or Ant

Colony Optimization.

Conclusion

The visiting cities problem on HackerRank offers an excellent opportunity to practice graph traversal
techniques and deepen your understanding of Python programming. By representing the cities as a graph
and employing a systematic approach, you can effectively determine the best route to visit all specified
cities. The provided solution, while straightforward, can be optimized further depending on the problem's
constraints. As you practice, consider exploring various graph algorithms and techniques to enhance your

coding skills and problem-solving abilities.

Frequently Asked Questions

What is the "Visiting Cities' problem on HackerRank?

The 'Visiting Cities' problem on HackerRank typically involves optimizing the route to visit a series of

cities while minimizing the total travel cost or distance, often requiring the use of graph algorithms.

What data structures are commonly used to solve the "Visiting Cities'
problem?

Common data structures include graphs (using adjacency lists or matrices), priority queues (for Dijkstra's

algorithm), and sets or dictionaries for tracking visited nodes.

Which algorithm is most suitable for solving the "Visiting Cities' problem?

Dijkstra's algorithm is often suitable for finding the shortest paths in weighted graphs, while other
algorithms like Floyd-Warshall may be used for all-pairs shortest paths.

How do you represent cities and roads in Python for this problem?

Cities can be represented as nodes in a graph, and roads as edges with weights. You can use a dictionary to

map each city to its connected cities and their respective travel costs.

‘What are some common pitfalls to avoid when solving the 'Visiting
Cities' problem?

Common pitfalls include not handling negative weights correctly, forgetting to check for cycles in directed

graphs, and inefficiently implementing the algorithm leading to timeouts on larger inputs.

Can you provide a simple Python code snippet to implement Dijkstra's

algorithm for this problem?

Certainly! Here's a simple snippet:

“python
import heapq

def dijkstra(graph, start):
min_heap = [(0, start)]
distances = {city: float('inf") for city in graph}

distances[start] = 0

while min_heap:

current_distance, current_city = heapq.heappop(min_heap)

if current_distance > distances|current_city]:

continue

for neighbor, weight in graph[current_city |.items():
distance = current_distance + weight

if distance < distances|neighbor]:
distances[neighbor| = distance
heapqg.heappush(min_heap, (distance, neighbor))

return distances

How can I test my solution for the "Visiting Cities' problem?

You can test your solution by creating unit tests with sample inputs and expected outputs. Additionally,

use HackerRank's test cases and edge cases to validate your implementation.

‘What resources can help improve my problem-solving skills for "Visiting
Cities' on HackerRank?

Resources include HackerRank's tutorials, competitive programming blogs, YouTube channels focused on

algorithm challenges, and practice problems on platforms like LeetCode and Codeforces.

Find other PDF article:
https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answe

rs.pdf

https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answers.pdf
https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answers.pdf

Visiting Cities Hackerrank Solution Python

visit(OOingOd0visitting[QOvisiting(] - 0000
visiting 10000 0 ['vizitig] 0 ['vizitig] 20000 n. 00000000 adj. 000 00visitd 0000 00. 30000 London is a
city worth visiting. 00000000000 40000 ...

visit{000visiting0O000 - 0000

visitJO000visitingOO0O000000000CCCO000000 0000000000 visitDOOO0;00 000 He wanted to visit his
brother in Worcester. 0000000 ...

visitOOO000 - 0000
They are visiting the Great Wall of China today. J00000000000C0OC O The tourists visited the Louvre
Museum in Paris. J00000000000000CC O 40Pay a visit ...

JoO0ooooonoon - 0odo
Dec 1, 2024 - J0000000000OWarmly welcome the delegation of XXX for their visit.It is with great
pleasure that we extend our warmest welcome to the delegation of XXX who are ...

exchange student [] visiting student
00000 D000 Do000000CC00000D0C0O00000OCDO00000OC0000Onon-degree studentJ000000000000CC0O000
aooooa ...

visiting fellow [Jvisiting scholar [JJ0000_0000
visiting fellow [Jvisiting scholarJJ000000000000000000 000000 10visiting fellowOOOO000 20visiting
scholar(IJ0000 000000 10visiting ...

J00000namecard [J[] business card? -][]

namecard [] business card [J0000000 10business card OQON00000000000OO00000O0000 OOWhen we met,
he gave me his business card. 0000000 ...

travel[Jtour(jjourney(Jtrip B
travel[ltour{fjourney{jtrip(j000 1Journey (n.)---“00",“00".0000,000000000. 20Tour (n.)---“00".00000000
0000000000 30Trip (n.)---“007.0000 -

000000000000 welcome to visit us [J 000 ...
Dec 24, 2010 - J0000welcome to visiting us[] 0J0000000000Owelcome to visit us welcome[0000000000

10000000welcome to China2[j0000T

O0000having visited [visiting(Q - 0000
Jun 11, 2022 - J0000having visited OvisitingQ0000000000000000000000000visitO0000000000O
O0visited 000000000OCCCCOOO -

visit[Jing(visitting(]visiting[] - 0000
visiting 10000 0 ['vrzttiy] [['vizitr] 20000 n. 00000000 adj. 000 O0OvisitD 0000 00. 30000 London is a
city worth visiting. 00000000000 40000 ...

visit visiting -
visitJO000visitingOO0000000000CCCO000000 0000000000 visitDOoOO0:;00 000 He wanted to visit his
brother in Worcester. (00000000 .-

https://soc.up.edu.ph/64-frame/pdf?title=visiting-cities-hackerrank-solution-python.pdf&trackid=Hbl92-7732

visitOO0000 - 0000
They are visiting the Great Wall of China today. J00000000000000 O The tourists visited the Louvre

Museum in Paris. JJ000000000000000 O 40Pay a visit ...

Jo00oooooooo0 - 0odd
Dec 1, 2024 - (000000000000OWarmly welcome the delegation of XXX for their visit.It is with great
pleasure that we extend our warmest welcome to the delegation of XXX who are ...

000000 exchange student [] visiting student (][]
00000 0000 DO000CO000DO000DO00DO000CO000DO000000000non-degree studentO000000000000000000
aooooo -

visiting fellow [Jvisiting scholar [JJ0000_0000
visiting fellow [Jvisiting scholar(000000000000000C0000 000000 10visiting fellow[O00000 20visiting
scholar(lJ0000 000000 1Qvisiting ...

namecard [J[] business card? -
namecard [] business card 000000 10business card O0000000000000000000000 OOWhen we met,
he gave me his business card. Q0000000 ...

travel[ltour{jjourney[Jtrip0]0000000000_0000
travel[Jtour(Jjourney[jtrip(000 1[QJourney (n.)---“00",“00".0000,000000000. 20Tour (n.)---“00".00000000
00000CCC00. 30Trip (n.)---“00”.0000 -

welcome to visit us
Dec 24, 2010 - J0000welcome to visiting us[] 0J0000000000Owelcome to visit us welcome[0000000000
10000000welcome to China2[J000T

00000having visited [Jvisiting(Q - 0000
Jun 11, 2022 - (0000having visited [visiting0O0000000C0OCO00COOCO000Ovisit 000000000000
O0visited J00000000000000CC -

Discover the optimal Python solution for the Visiting Cities HackerRank challenge. Enhance your
coding skills and tackle this problem effectively. Learn more!

Back to Home

https://soc.up.edu.ph

