
Visiting Cities Hackerrank Solution Python

Visiting cities hackerrank solution python is a popular problem found on the HackerRank platform, a
competitive programming website that provides coding challenges and contests for developers and
programmers. The problem typically revolves around determining the best route for visiting a set of cities
while adhering to specific constraints. This article will explore a comprehensive guide to solving this
problem using Python, including an overview of the problem statement, a breakdown of the approach to
the solution, a detailed explanation of the code, and some tips for optimizing your solution.

Understanding the Problem Statement

The visiting cities problem usually describes a scenario where you have a group of cities, each uniquely
identified by a number. You are given a start city and a destination city, and you need to find a way to
visit each city exactly once before returning to the start city. The challenge is to determine if such a route
is possible and, if so, to calculate the distance or cost of traversing that route.

Here’s a simplified version of the problem statement:

- You are given a number of cities and a set of direct paths between them, each with an associated distance.
- You need to determine if it is possible to visit all cities starting from a given city and returning to it.
- If possible, compute the minimum distance required to complete the trip.

Breaking Down the Approach

To solve the visiting cities problem effectively, we can break down the approach into several key steps:



1. Graph Representation

The cities and their connections can be represented as a graph. In this representation:

- Each city is a node.
- Each direct path between cities is an edge, with weights corresponding to the distance between the cities.

You can use a dictionary or an adjacency list to represent this graph.

2. Depth-First Search (DFS) or Backtracking

To explore all possible routes, we can use DFS or a backtracking algorithm. This approach will allow us to
traverse the graph while keeping track of visited cities and calculating the total distance traveled.

3. Checking Validity

While traversing, we need to ensure that:

- Each city is visited exactly once.
- We return to the starting city after visiting all other cities.

4. Distance Calculation

As we traverse the graph, we keep a running total of the distance traveled. At the end of the traversal, if
we have successfully visited all cities, we can compare this distance with previously calculated distances to
find the minimum.

5. Edge Cases

Consider edge cases such as:

- No paths exist between certain cities.
- More cities than paths.
- All cities are connected.



Implementing the Solution in Python

Now that we have a clear approach, let’s implement the solution in Python. Below is an example code that
demonstrates how to solve the visiting cities problem using DFS:

```python
def visitingCities(n, paths):
from collections import defaultdict

Create a graph representation using an adjacency list
graph = defaultdict(list)
for u, v, d in paths:
graph[u].append((v, d))
graph[v].append((u, d)) Since the graph is undirected

Variables to keep track of the minimum distance
min_distance = float('inf')

Function to perform DFS
def dfs(city, visited, current_distance, count):
nonlocal min_distance

If all cities have been visited and we're back to the start
if count == n and city == 0:
min_distance = min(min_distance, current_distance)
return

Visit adjacent cities
for neighbor, distance in graph[city]:
if not visited[neighbor]:
visited[neighbor] = True Mark as visited
dfs(neighbor, visited, current_distance + distance, count + 1)
visited[neighbor] = False Unmark after backtracking

Start DFS from the first city (0)
visited = [False] n
visited[0] = True Starting city visited
dfs(0, visited, 0, 1) Start DFS

return min_distance if min_distance != float('inf') else -1

Example usage



n = 4 Number of cities
paths = [(0, 1, 10), (1, 2, 10), (2, 3, 10), (3, 0, 10), (0, 2, 15)]
print(visitingCities(n, paths)) Output minimum distance or -1 if not possible
```

Code Explanation

Let’s break down the code step by step:

1. Graph Representation:
- We use a `defaultdict` from the `collections` module to create an adjacency list for the graph. Each city
points to a list of tuples, where each tuple represents a neighboring city and the distance to it.

2. DFS Function:
- The `dfs` function takes the current city, a list to track visited cities, the current distance traveled, and a
count of visited cities.
- If we have visited all cities and returned to the starting point, we update the minimum distance.

3. Visiting Cities:
- We begin DFS from the starting city (city 0 in this case), marking it as visited.
- We recursively call the `dfs` function for each unvisited neighboring city, updating the visited list
accordingly.

4. Returning the Result:
- After executing DFS, we check if we found a valid route. If `min_distance` remains `inf`, it means no
valid route exists, and we return -1.

Optimizing the Solution

While the above solution works, it may not be efficient for larger graphs due to its exponential time
complexity. To optimize:

- Memoization: Store results of previously computed states to avoid redundant calculations.
- Dynamic Programming: Implement a more sophisticated approach using dynamic programming to reduce
the state space.
- Heuristic Methods: For very large graphs, consider heuristic approaches like Genetic Algorithms or Ant
Colony Optimization.



Conclusion

The visiting cities problem on HackerRank offers an excellent opportunity to practice graph traversal
techniques and deepen your understanding of Python programming. By representing the cities as a graph
and employing a systematic approach, you can effectively determine the best route to visit all specified
cities. The provided solution, while straightforward, can be optimized further depending on the problem's
constraints. As you practice, consider exploring various graph algorithms and techniques to enhance your
coding skills and problem-solving abilities.

Frequently Asked Questions

What is the 'Visiting Cities' problem on HackerRank?
The 'Visiting Cities' problem on HackerRank typically involves optimizing the route to visit a series of
cities while minimizing the total travel cost or distance, often requiring the use of graph algorithms.

What data structures are commonly used to solve the 'Visiting Cities'
problem?
Common data structures include graphs (using adjacency lists or matrices), priority queues (for Dijkstra's
algorithm), and sets or dictionaries for tracking visited nodes.

Which algorithm is most suitable for solving the 'Visiting Cities' problem?
Dijkstra's algorithm is often suitable for finding the shortest paths in weighted graphs, while other
algorithms like Floyd-Warshall may be used for all-pairs shortest paths.

How do you represent cities and roads in Python for this problem?
Cities can be represented as nodes in a graph, and roads as edges with weights. You can use a dictionary to
map each city to its connected cities and their respective travel costs.

What are some common pitfalls to avoid when solving the 'Visiting
Cities' problem?
Common pitfalls include not handling negative weights correctly, forgetting to check for cycles in directed
graphs, and inefficiently implementing the algorithm leading to timeouts on larger inputs.

Can you provide a simple Python code snippet to implement Dijkstra's



algorithm for this problem?
Certainly! Here's a simple snippet:

```python
import heapq

def dijkstra(graph, start):
min_heap = [(0, start)]
distances = {city: float('inf') for city in graph}
distances[start] = 0

while min_heap:
current_distance, current_city = heapq.heappop(min_heap)

if current_distance > distances[current_city]:
continue

for neighbor, weight in graph[current_city].items():
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(min_heap, (distance, neighbor))
return distances
```

How can I test my solution for the 'Visiting Cities' problem?
You can test your solution by creating unit tests with sample inputs and expected outputs. Additionally,
use HackerRank's test cases and edge cases to validate your implementation.

What resources can help improve my problem-solving skills for 'Visiting
Cities' on HackerRank?
Resources include HackerRank's tutorials, competitive programming blogs, YouTube channels focused on
algorithm challenges, and practice problems on platforms like LeetCode and Codeforces.

Find other PDF article:
https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answe
rs.pdf

https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answers.pdf
https://soc.up.edu.ph/48-shade/files?docid=eST29-8880&title=premier-food-safety-final-exam-answers.pdf


Visiting Cities Hackerrank Solution Python

visit转换为ing形式是visitting还是visiting？ - 百度知道
visiting 1、发音： 英 ['vɪzɪtɪŋ] 美 ['vɪzɪtɪŋ] 2、含义： n. 参观；访问；拜访 adj. 访问的 动词visit的 现在分词 形式. 3、实例： London is a
city worth visiting. 伦敦是值得参观的城市。 4、固定搭 …

visit作名词时与visiting有什么区别 - 百度知道
visit作名词时与visiting的区别为：意思不同、用法不同、侧重点不同。 一、作名词时意思不同 visit意思：参观;游览 例句： He wanted to visit his
brother in Worcester. 他想去看望住在伍斯 …

visit的用法和短语 - 百度知道
They are visiting the Great Wall of China today. （他们今天正在参观中国的长城。 ） The tourists visited the Louvre
Museum in Paris. （游客们在巴黎参观了卢浮宫博物馆。 ） 4、Pay a visit …

热烈欢迎某某一行来访的英语 - 百度知道
Dec 1, 2024 · 热烈欢迎某某一行来访的英语Warmly welcome the delegation of XXX for their visit.It is with great
pleasure that we extend our warmest welcome to the delegation of XXX who are …

申请日本交换 exchange student 和 visiting student 的区别
两者异同： 一、性质 两者都属于短期留学交流范畴，均可在日本院校学习一到两学期（通常不超一学年），均为non-degree student，课程结束不取得日本学校学位，但可获得
日本院校颁发 …

visiting fellow 和visiting scholar 有什么区别吗_百度知道
visiting fellow 和visiting scholar的区别为：指代不同、用法不同、侧重点不同 一、指代不同 1、visiting fellow：访问研究员。 2、visiting
scholar：访问学者。 二、用法不同 1、visiting …

名片英文是用namecard 还是 business card? - 百度知道
namecard 和 business card 都可以表示名片。 1、business card 指的是名片，上面主要是商业信息，以工作单位为主。 例：When we met,
he gave me his business card. 我们见面时，他给 …

travel、tour、journey、trip有什么区别？（具体点儿）_百度知道
travel、tour、journey、trip的区别： 1、Journey (n.)---“旅行”,“旅程”.普通用语,指陆地上的远程旅行. 2、Tour (n.)---“周游”.指途中在许多地方
作短暂停留的观光游览. 3、Trip (n.)---“旅行”.指来往有 …

恭候您的光临！翻译成英语 welcome to visit us ？ 还是可以 …
Dec 24, 2010 · 还是可以用welcome to visiting us？ 我觉得应该是第一种翻译，即welcome to visit us welcome的用法主要是以下几种：
1、感叹词，如，welcome to China2、名词，如T

句子的开头having visited 和visiting区别 - 百度知道
Jun 11, 2022 · 句子的开头having visited 和visiting区别一种是正在进行时，一种是过去时。这里涉及到了动词visit参观的三种不同的时态。首
先，visited是参观的过去时，表示动作已经在过去 …

visit转换为ing形式是visitting还是visiting？ - 百度知道
visiting 1、发音： 英 ['vɪzɪtɪŋ] 美 ['vɪzɪtɪŋ] 2、含义： n. 参观；访问；拜访 adj. 访问的 动词visit的 现在分词 形式. 3、实例： London is a
city worth visiting. 伦敦是值得参观的城市。 4、固定搭 …

visit作名词时与visiting有什么区别 - 百度知道
visit作名词时与visiting的区别为：意思不同、用法不同、侧重点不同。 一、作名词时意思不同 visit意思：参观;游览 例句： He wanted to visit his
brother in Worcester. 他想去看望住在伍斯 …

https://soc.up.edu.ph/64-frame/pdf?title=visiting-cities-hackerrank-solution-python.pdf&trackid=Hbl92-7732


visit的用法和短语 - 百度知道
They are visiting the Great Wall of China today. （他们今天正在参观中国的长城。 ） The tourists visited the Louvre
Museum in Paris. （游客们在巴黎参观了卢浮宫博物馆。 ） 4、Pay a visit …

热烈欢迎某某一行来访的英语 - 百度知道
Dec 1, 2024 · 热烈欢迎某某一行来访的英语Warmly welcome the delegation of XXX for their visit.It is with great
pleasure that we extend our warmest welcome to the delegation of XXX who are …

申请日本交换 exchange student 和 visiting student 的区别
两者异同： 一、性质 两者都属于短期留学交流范畴，均可在日本院校学习一到两学期（通常不超一学年），均为non-degree student，课程结束不取得日本学校学位，但可获得
日本院校颁发 …

visiting fellow 和visiting scholar 有什么区别吗_百度知道
visiting fellow 和visiting scholar的区别为：指代不同、用法不同、侧重点不同 一、指代不同 1、visiting fellow：访问研究员。 2、visiting
scholar：访问学者。 二、用法不同 1、visiting …

名片英文是用namecard 还是 business card? - 百度知道
namecard 和 business card 都可以表示名片。 1、business card 指的是名片，上面主要是商业信息，以工作单位为主。 例：When we met,
he gave me his business card. 我们见面时，他给 …

travel、tour、journey、trip有什么区别？（具体点儿）_百度知道
travel、tour、journey、trip的区别： 1、Journey (n.)---“旅行”,“旅程”.普通用语,指陆地上的远程旅行. 2、Tour (n.)---“周游”.指途中在许多地方
作短暂停留的观光游览. 3、Trip (n.)---“旅行”.指来往有 …

恭候您的光临！翻译成英语 welcome to visit us ？ 还是可以 …
Dec 24, 2010 · 还是可以用welcome to visiting us？ 我觉得应该是第一种翻译，即welcome to visit us welcome的用法主要是以下几种：
1、感叹词，如，welcome to China2、名词，如T

句子的开头having visited 和visiting区别 - 百度知道
Jun 11, 2022 · 句子的开头having visited 和visiting区别一种是正在进行时，一种是过去时。这里涉及到了动词visit参观的三种不同的时态。首
先，visited是参观的过去时，表示动作已经在过去 …

Discover the optimal Python solution for the Visiting Cities HackerRank challenge. Enhance your
coding skills and tackle this problem effectively. Learn more!

Back to Home

https://soc.up.edu.ph

