Valid Anagram Leetcode Solution

242.VALID ANAGRAM

242. Valid Anagram I_E ETCODE
Easy (% dyesk LP27o EASY

C_ *._—ig >Java
| LeetCode sl

Valid anagram LeetCode solution is a common problem encountered by many programmers, especially

those preparing for technical interviews or participating in coding competitions. An anagram is a word or
phrase formed by rearranging the letters of a different word or phrase, typically using all the original
letters exactly once. The challenge presented in platforms like LeetCode often involves determining
whether two given strings are anagrams of each other. In this article, we will explore the problem, discuss

various approaches to solve it, and provide a detailed solution in Python.

Understanding the Problem

The problem statement can be summarized as follows:
Given two strings, 's” and 't’, write a function to determine if 't* is an anagram of 's’.

An anagram must satisfy the following conditions:
- Both strings must have the same length.

- Both strings must contain the same characters in the same frequency.

For example:
- Input: 's = "anagram”, t = "nagaram"" -> Output: "True’

- Input: 's = "rat", t = "car"" -> Output: "False’

Approaches to Solve the Problem

There are multiple ways to determine if two strings are anagrams. Below we will discuss three common

approaches:

1. Sorting Method

One straightforward way to check if two strings are anagrams is to sort both strings and compare them. If

the sorted versions are the same, then the strings are anagrams.

Steps:
1. Check if the lengths of the two strings are equal.
2. Sort both strings.

3. Compare the sorted strings.

Time Complexity: O(n log n) due to the sorting operation.

2. Frequency Counting Using a Hash Map

Another efficient approach involves counting the frequency of each character in both strings and

comparing the counts.

Steps:

1. Check if the lengths of the two strings are equal.

2. Create a frequency map for characters in the first string.

3. Decrease the count for characters found in the second string.

4. If all counts return to zero, the strings are anagrams.

Time Complexity: O(n)

3. Frequency Counting Using an Array

This method is similar to the Hash Map method but uses a fixed-size array instead. This is a good

optimization because the number of possible characters is limited (e.g., lowercase English letters).

Steps:
1. Check if the lengths of the two strings are equal.

2. Create an array of size 26 (for each letter in the English alphabet).
3. Increment the count for each character in the first string and decrement for the second string.

4. If all counts are zero, the strings are anagrams.

Time Complexity: O(n)

Implementing the Solution

Let's implement the solution using the second method, the frequency counting with a hash map, and the

third method using an array.

Solution using Hash Map

Here’s a Python implementation using a hash map:

““python
def isAnagram(s: str, t: str) -> bool:
if len(s) = len(t):

return False
count = {}

for char in s:

count[char] = count.get(char, 0) + 1

for char in t:

if char not in count:
return False
count[char] -= 1

if count[char] < 0:

return False

return True

Solution using Array

Now, let's see the implementation using an array:

python
def isAnagram(s: str, t: str) -> bool:
if len(s) != len(t):

return False
count = [0] 26 Assuming only lowercase letters

for char in s:
count[ord(char) - ord('a')] += 1

for char in t:
count[ord(char) - ord('a')] -= 1
if count[ord(char) - ord('a')] < 0:

return False

return True

Testing the Function

It is essential to test our function with various cases to ensure its correctness. Here are some test cases:

“python
Test cases
print(isAnagram("anagram”, "nagaram")) True
print(isAnagram("rat", "car")) False
print(isAnagram("listen", "silent")) True
print(isAnagram("evil", "vile")) True
print(isAnagram("fluster”, "restful")) True

((

prlnt isAnagram("abc", "ab")) False

Conclusion

The problem of determining whether two strings are anagrams of each other can be solved efficiently
with various approaches. The sorting method is simple but not the most optimal. The frequency counting
methods, whether using a hash map or an array, provide a more efficient solution with linear time

complexity.

In competitive programming and technical interviews, understanding the underlying principles and being
able to articulate your thought process is as important as arriving at the correct solution. Therefore,
practicing problems like the valid anagram on platforms such as LeetCode can significantly enhance your

problem-solving skills and prepare you for future challenges.

Frequently Asked Questions

‘What is the problem statement for the "Valid Anagram' LeetCode
challenge?

The 'Valid Anagram' problem requires you to determine if two strings are anagrams of each other,

meaning they contain the same characters in the same frequency but possibly in a different order.

What are common approaches to solve the 'Valid Anagram' problem?

Common approaches include sorting both strings and comparing them, or using a frequency count with a

hash map or an array to track the number of occurrences of each character.

How can the sorting approach be implemented in Python for "Valid
Anagram'?

You can implement the sorting approach by using the 'sorted()' function on both strings and comparing the

results: return sorted(s1) == sorted(s2).

What is the time complexity of the frequency count method for "Valid
Anagram"?

The time complexity of the frequency count method is O(n), where n is the length of the strings, because

you are iterating through the characters to build the frequency count.

Are there any edge cases to consider when solving the 'Valid Anagram'
problem?

Yes, you should consider edge cases such as empty strings, strings of different lengths, and cases with

special characters or spaces, as these can affect whether the strings are anagrams.

Find other PDF article:
https://soc.up.edu.ph/53-scan/pdf?docid=Hgv82-5466 &title=shadows-fall-simon-r-qreen.pdf

https://soc.up.edu.ph/53-scan/pdf?docid=Hgv82-5466&title=shadows-fall-simon-r-green.pdf

Valid Anagram lLeetcode Solution

is not a valid integer value [0 - 0000

Dec 30, 2024 - “is not a valid integer value”[I00000000000000000000000C0000C000 00000 1. 000000
0000 O00000000000aa -

O0000validthru[0000 - 0000
Mar 1, 2022 - J0000OvalidthruJ00000000000000C000000000C000000000CO0C000000000000000Valid
From 12/08[JValid Thru ...

0000000*D000000000” - Doo0
Apr 21, 2014 - 0000D0O0----00000COEXCELO0*0000C000000COO00D00C0O0DO0C0O0000C0E -

O0000000Date of Birth (MM/DD/YYYY)[]_[00
00000000Date of Birth (MM/DD/YYYY)(IOOOD 0OCOCOCOD

valid until(J(000 - 0000
Apr 10, 2024 - valid untilJ00“0000"0 00000000000C0000000“valid wntil” DO00000000C0000000000000
00000000000ooo ...

valid thru[J00000_0000
Feb 9, 2024 - validthruJi]0goodthrufigQ valid thrugO000 valid thrud0000000000000000000000000000

O0valid thru[112/21000000000 ...

valid percent[JCumulative Percent -
Aug 25, 2013 - valid percent[JCumulative Percent[J[J[JValidPercent:[(J00 (ValidPercent): 00000000000

00.cumulativepercent: 1.0 ...

000000000CO0evv200000Y YAMM[_0O000
O00000000C00evv200000YY\MMOOO0000cvv200000Y Y\MMO0000000C000000C0000000C000000C000
0160000 ...

validthru[J0000 - 0000

validthru[Jji00validthru000000000000000000C0000C00000000validthra 09/1 200000000000C0000
20120097030024p000000 -

O00000000000MONTH/YEAR[OOVALID THRU[] ...

000000000OO0OMONTH/YEAR{OOVALID THRUOOOOOOD DOO0DOOCOO0COODOO0COODD/0000C00000040000
(0000000000

is not a valid integer value -
Dec 30, 2024 - “is not a valid integer value”[0000000000000C0000CO000CO000C0000 OO0OO 1. 000000

Uuud HHoodooooooaa -

O0000validthru[0000 - 0000
Mar 1, 2022 - 00000validthru0000000000COO00000CCO00000CDO000000C0O00000C00O000000O Valid
From 12/08[JValid Thru ...

0000000*D000000C00” - booo

https://soc.up.edu.ph/64-frame/pdf?title=valid-anagram-leetcode-solution.pdf&trackid=BIT00-2185

Apr 21, 2014 - (000000---000000CEXCELO0*0000000000CO000CDO000O00C0000C0000 -«

00000000Date of Birth (MM/DD/YYYY)[(000
00000000Date of Birth (MM/DD/YYYY)(00000 000000000

valid until(JJ000 - 0000

Apr 10, 2024 - valid untilJI00*0000"0 O00O0OO0O00000OCO0O“valid until” 00000000C0000000000C00C0O
O000CCCooooooa® ...

valid thru[J(0000_0000
Feb 9, 2024 - validthru[JJ0JgoodthruJJ0Q valid thruQJ00Q valid thruQ0000000000000000000000000000
[valid thra[]12/2 1000000000 ...

valid percent[JCumulative Percent[][]] - 0000
Aug 25, 2013 - valid percent[JCumulative Percent[J[JJValidPercent:(00 (ValidPercent): 00000000000
00.cumulativepercent: 1.0 ...

000000000000cvv200000YY\MMO 0000

(000000000COevv200000Y Y\MMOO00000cvv200000Y WMMOO000000000D0000C0000D0000C00000000
0160000 -

validthru[J0000 - 0000
validthru[J[j000validthru[j00000000000000000000C0000000C000validthru 09/1 20000000000000000
20120097030024000000 -

O0000000000OMONTH/YEAR[OOVALID THRU[(] ...

000000O00DO0OMONTH/YEAR{OOVALID THRUOOOOOOD DOO0DOOCOO0COODOO0COODD/0000C00000040000
(0000000000

Unlock the secrets to solving the 'Valid Anagram' LeetCode challenge with our comprehensive guide.
Discover how to implement the perfect solution today!

Back to Home

https://soc.up.edu.ph

