Tcp Ip Sockets In C

i TCP/IP Sockets

= mySock = socket(family, type, protocol);
= TCP/IP-specific sockets

Family Type Protocol
TCP | SOCK_STREAM IPPROTO_TCP
PF_INET
uop : SOCK_DGRAM IPPROTO_UDP

= Socket reference
= File (socket) descriptor in UNIX
« Socket handle in WinSock

TCP/IP Sockets in C are a powerful way to implement network communication in C programming.
This approach allows developers to create applications that can communicate over a network,
whether it be a local area network (LAN) or the internet. TCP/IP (Transmission Control
Protocol/Internet Protocol) is the fundamental suite of protocols that underpin the internet and most
networks today. Understanding how to implement TCP/IP sockets in C provides you with the ability
to build robust applications that can send and receive data over the network reliably.

Understanding TCP/IP and Sockets

What is TCP/IP?

TCP/IP is a set of communication protocols used for the internet and similar networks. It is divided
into layers, which define how data is transmitted, routed, and processed. The main layers include:

1. Application Layer: Where applications that utilize the network communicate (e.g., HTTP, FTP).

2. Transport Layer: Responsible for end-to-end communication, ensuring that data is delivered error-
free and in sequence (e.g., TCP, UDP).

3. Internet Layer: Manages addressing and routing of packets across networks (e.g., IP).

4. Link Layer: Handles the physical transmission of data over a given link (e.g., Ethernet).

What Are Sockets?

Sockets are endpoints for sending and receiving data across a network. They provide an interface
for network communication, allowing programs to communicate with each other irrespective of their
location. Sockets can be classified mainly into two types:

- Stream Sockets (TCP): Provide reliable, connection-oriented communication. They ensure that data
is delivered in order and without duplication.

- Datagram Sockets (UDP): Provide connectionless communication. They are faster but do not
guarantee reliability or order.

Setting Up a TCP/IP Socket in C

To create a TCP/IP socket in C, you need to follow several steps. The process involves creating a
socket, binding it to a port, listening for connections, accepting clients, and then sending and
receiving data.

1. Include Necessary Headers

Start by including the necessary header files. Below are the common headers required for socket
programming in C:

o
include
include
include
include
include
include

*: For standard input and output functions.

"": For memory allocation and process control.

**: For string manipulation functions.

*": For various POSIX operating system API.

“": For internet operations, especially with sockets.
"": For the definition of the internet address family.

2. Create a Socket

To create a socket, you will use the “socket()" function. Here’s how to do it:

e
int sockfd;

sockfd = socket(AF INET, SOCK STREAM, 0);
if (sockfd < 0) {

perror("Socket creation failed");

exit(EXIT FAILURE);

}

- "AF INET": Specifies the address family (IPv4).
- "'SOCK STREAM ': Indicates that it is a stream socket (TCP).
- "0": Specifies the protocol. When set to 0, the system chooses the appropriate protocol.

3. Bind the Socket

After creating the socket, bind it to a specific port and IP address using the "bind()" function.

c
struct sockaddr in server addr;
memset(&server addr, 0, sizeof(server addr));
server addr.sin family = AF INET;
server addr.sin addr.s addr = INADDR ANY; // Bind to all available interfaces
server addr.sin port = htons(port); // Convert port number to network byte order

if (bind(sockfd, (struct sockaddr)&server addr, sizeof(server addr)) < 0) {
perror("Binding failed");

exit(EXIT _FAILURE);
}

4. Listen for Connections

Once the socket is bound to an address, it needs to listen for incoming connections:
o
if (listen(sockfd, 5) < 0) {

perror("Listen failed");
exit(EXIT FAILURE);

ANANRN

The second parameter represents the maximum length of the queue of pending connections.

5. Accept Incoming Connections

The next step is to accept incoming connections from clients:

o
struct sockaddr in client addr;

socklen t client len = sizeof(client addr);

int new_sockfd = accept(sockfd, (struct sockaddr)&client addr, &client len);

if (new sockfd < 0) {
perror("Accept failed");
exit(EXIT FAILURE);

}

This function will block until a connection is made.

6. Sending and Receiving Data

After establishing a connection, you can send and receive data using "send()” and "recv()" functions.

o
char buffer[1024] = {0};

recv(new sockfd, buffer, sizeof(buffer), 0);
printf("Message from client: %s\n", buffer);

const char message = "Hello from server";
send(new sockfd, message, strlen(message), 0);

7. Close the Socket

Finally, it’s essential to close the socket when the communication is done:

o
close(new sockfd);
close(sockfd);

Example: A Simple TCP Server in C

Below is a complete example of a simple TCP server that echoes back messages received from a
client.

o
include
include
include
include

include

int main() {

int sockfd, new sockfd;

struct sockaddr in server addr, client addr;
socklen t client len;

char buffer[1024] = {0};

const int port = 8080;

sockfd = socket(AF INET, SOCK STREAM, 0);
if (sockfd < 0) {

perror("Socket creation failed");

exit(EXIT FAILURE);

}

memset(&server addr, 0, sizeof(server addr));
server addr.sin family = AF INET;
server addr.sin addr.s addr = INADDR ANY;
server addr.sin port = htons(port);

if (bind(sockfd, (struct sockaddr)&server addr, sizeof(server addr)) < 0) {
perror("Binding failed");

exit(EXIT FAILURE);

}

if (listen(sockfd, 5) < 0) {
perror("Listen failed");
exit(EXIT FAILURE);

}

client len = sizeof(client addr);

new sockfd = accept(sockfd, (struct sockaddr)&client addr, &client len);
if (new sockfd < 0) {

perror("Accept failed");

exit(EXIT FAILURE);

}

while (1) {

memset(buffer, 0, sizeof(buffer));

int valread = recv(new sockfd, buffer, sizeof(buffer), 0);
if (valread <= 0) {

break; // Exit on error or connection closed

}

printf("Message from client: %s\n", buffer);

send(new sockfd, buffer, strlen(buffer), 0); // Echo back

}

close(new sockfd);
close(sockfd);
return 0O;

}

Common Issues and Troubleshooting

When working with TCP/IP sockets in C, you may encounter various issues. Here are some common
problems and their solutions:

- Socket Creation Failure: Ensure that you check for errors after calling “socket() . If the system
resources are low, it may fail.

- Binding Issues: If the port is already in use, the "bind()" function will fail. Use "netstat’ to check for
running services on that port.

- Connection Refused: This usually indicates that the server is not running or not listening on the
specified port.

Conclusion

TCP/IP Sockets in C offer a robust foundation for network programming. By understanding the
fundamental concepts and the steps to implement sockets, developers can create a wide range of
applications, from simple servers to complex distributed systems. Mastery of socket programming
opens the door to endless possibilities in the realm of networking and communication. As you gain
experience, consider exploring advanced topics such as multi-threaded servers, non-blocking
sockets, and security protocols to further enhance your skills.

Frequently Asked Questions

What are TCP/IP sockets in C?

TCP/IP sockets in C are endpoints for sending and receiving data across a network using the
Transmission Control Protocol (TCP) and the Internet Protocol (IP). They facilitate communication
between programs over a network.

How do you create a TCP socket in C?

To create a TCP socket in C, you use the socket() function with the parameters AF INET (for [Pv4)
and SOCK STREAM (for TCP), like this: int sockfd = socket(AF INET, SOCK STREAM, 0);

What is the difference between TCP and UDP sockets?

TCP sockets provide reliable, ordered, and error-checked delivery of data, whereas UDP sockets
offer a connectionless service without guaranteed delivery, order, or error checking, making them
faster but less reliable.

How do you connect to a server using TCP sockets in C?

To connect to a server, you first create a socket, then define the server's address using sockaddr in,
and finally use the connect() function to establish the connection, like this: connect(sockfd, (struct
sockaddr)&server addr, sizeof(server addr));

How can you handle multiple clients using TCP sockets in C?

You can handle multiple clients by using the select() function to monitor multiple sockets for activity,
or by using multi-threading or forking processes to manage each client connection in parallel.

What is the purpose of the listen() and accept() functions?

The listen() function is used by a server to indicate it is ready to accept incoming connections, while
the accept() function is used to accept a connection from a client, returning a new socket descriptor
for the connection.

How do you send and receive data using TCP sockets in C?

Data can be sent using the send() function and received using the recv() function. Both functions
require the socket descriptor, a buffer for the data, and the size of the data to be sent or received.

Find other PDF article:
https://soc.up.edu.ph/39-point/Book?dataid=jop62-8131 &title=mastering-healthcare-terminolo

d-edition.pdf

Tcp Ip Sockets In C

Transmission Control Protocol - Wikipedia
The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite.
It originated in the initial network implementation in which it complemented the Internet ...

What is TCP (Transmission Control Protocol)? - GeeksforGeeks
6 days ago - Transmission Control Protocol (TCP) is a connection-oriented protocol for
communications that helps in the exchange of messages between different devices over a ...

RFC 9293: Transmission Control Protocol (TCP)

TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously
evolved over decades of use and growth of the Internet. Over this time, a number of changes ...

Transmission Control Protocol (TCP) - TechTarget
Jun 13, 2024 - Transmission Control Protocol (TCP) is a standard protocol on the internet that
ensures the reliable transmission of data between devices on a network. It defines how to ...

Transmission Control Protocol (TCP) - Network Encyclopedia
Oct 25, 2023 - Welcome to a thorough guide on the Transmission Control Protocol (TCP). In simple

https://soc.up.edu.ph/39-point/Book?dataid=jop62-8131&title=mastering-healthcare-terminology-3rd-edition.pdf
https://soc.up.edu.ph/39-point/Book?dataid=jop62-8131&title=mastering-healthcare-terminology-3rd-edition.pdf
https://soc.up.edu.ph/57-chart/Book?docid=snK36-5781&title=tcp-ip-sockets-in-c.pdf

terms, TCP is the communication protocol that ensures the reliable delivery of your ...

TCP: How the Transmission Control Protocol works - IONOS
Mar 2, 2020 - What is TCP (Transmission Control Protocol)? The Transmission Control Protocol, or
TCP protocol for short, is a standard for exchanging data between different devices in a ...

What is TCP (Transmission Control Protocol)? - Computer Hope
Dec 20, 2024 - Short for Transmission Control Protocol, TCP is a standard that dictates how to
establish and maintain a connection through which two programs may exchange data.

What Is TCP? | Meaning, Model, Ports & Software Explained
Jun 24, 2025 - TCP stands for Transmission Control Protocol. It is a fundamental protocol in the suite
of Internet protocols and is responsible for delivering data between computers reliably ...

What is TCP (Transmission Control Protocol)? | Restream Learn
TCP defines how to establish and maintain a network conversation through which application
programs can exchange data. It’s a core protocol of the Internet Protocol Suite, operating at a ...

What Is Transmission Control Protocol? - phoenixNAP
Apr 29, 2025 - Transmission Control Protocol (TCP) is a foundational communication protocol used
in computer networks to ensure reliable, ordered, and error-free transmission of data ...

Transmission Control Protocol - Wikipedia

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite.
It originated in the initial network implementation in which it complemented the Internet Protocol
(IP). Therefore, the entire suite is commonly referred to as TCP/IP.

What is TCP (Transmission Control Protocol)? - GeeksforGeeks

6 days ago - Transmission Control Protocol (TCP) is a connection-oriented protocol for
communications that helps in the exchange of messages between different devices over a network. It
is one of the main protocols of the TCP/IP suite. In OSI model, it operates at the transport
layer(Layer 4).

RFC 9293: Transmission Control Protocol (TCP)

TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously
evolved over decades of use and growth of the Internet. Over this time, a number of changes have
been made to TCP as it was specified in RFC 793, though these have only been documented in a
piecemeal fashion.

Transmission Control Protocol (TCP) - TechTarget

Jun 13, 2024 - Transmission Control Protocol (TCP) is a standard protocol on the internet that
ensures the reliable transmission of data between devices on a network. It defines how to establish
and maintain a network conversation by which applications can exchange data.

Transmission Control Protocol (TCP) - Network Encyclopedia

Oct 25, 2023 - Welcome to a thorough guide on the Transmission Control Protocol (TCP). In simple
terms, TCP is the communication protocol that ensures the reliable delivery of your data across the
internet.

TCP: How the Transmission Control Protocol works - IONOS
Mar 2, 2020 - What is TCP (Transmission Control Protocol)? The Transmission Control Protocol, or

TCP protocol for short, is a standard for exchanging data between different devices in a computer
network.

What is TCP (Transmission Control Protocol)? - Computer Hope
Dec 20, 2024 - Short for Transmission Control Protocol, TCP is a standard that dictates how to

establish and maintain a connection through which two programs may exchange data.

What Is TCP? | Meaning, Model, Ports & Software Explained

Jun 24, 2025 - TCP stands for Transmission Control Protocol. It is a fundamental protocol in the suite
of Internet protocols and is responsible for delivering data between computers reliably and in the
correct order. TCP is a connection-oriented protocol.

What is TCP (Transmission Control Protocol)? | Restream Learn

TCP defines how to establish and maintain a network conversation through which application
programs can exchange data. It’s a core protocol of the Internet Protocol Suite, operating at a
higher level than the Internet Protocol (IP), another crucial part of the internet's framework.

What Is Transmission Control Protocol? - phoenixNAP

Apr 29, 2025 - Transmission Control Protocol (TCP) is a foundational communication protocol used
in computer networks to ensure reliable, ordered, and error-free transmission of data between
devices. What Is the Transmission Control Protocol?

Master TCP/IP sockets in C with our comprehensive guide. Explore practical examples and coding
tips to enhance your networking skills. Learn more now!

Back to Home

https://soc.up.edu.ph

