Spherical Trigonometry Problems With
Solutions
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Spherical trigonometry problems are fascinating and complex mathematical challenges that arise in
the study of spherical shapes and the relationships between angles and distances on the surface of
spheres. Unlike planar trigonometry, which deals with flat surfaces, spherical trigonometry is
essential in fields such as astronomy, navigation, and geodesy, where the Earth is approximated as a
sphere. In this article, we will delve into various spherical trigonometry problems, offering a range
of solutions and explanations to enhance understanding.

Understanding Spherical Trigonometry

Spherical trigonometry focuses on the properties and relationships of spherical triangles. A
spherical triangle is formed by three points (vertices) on a sphere, connected by arcs of great circles
(the shortest path between two points on a sphere). The essential components of spherical triangles
include:

- Vertices: The three points on the sphere.

- Sides: The arcs of great circles connecting the vertices.
- Angles: The angles between the sides, measured at the vertices.

Key Formulas in Spherical Trigonometry

To tackle spherical trigonometry problems, it is crucial to familiarize yourself with some key
formulas and theorems, including:



1. Sine Rule:
\[
\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}

\]
where \( a, b, ¢ ) are the lengths of the sides, and \( A, B, C\) are the angles opposite those sides.

2. Cosine Rule for Sides:

\[
\cos a = \cos b \cos ¢ + \sin b \sin ¢ \cos A

\]

3. Cosine Rule for Angles:

\[
\cos A = -\cos B \cos C + \sin B \sin C \cos a

\]

These formulas are foundational for solving various problems in spherical trigonometry.

Spherical Trigonometry Problems

Now let's explore some representative problems in spherical trigonometry, along with detailed
solutions.

Problem 1: Finding the Angle of a Spherical Triangle

Problem Statement: Given a spherical triangle with sides \( a = 60" \circ \), \( b = 70" \circ \), and \( ¢
= 80" \circ \), find the angle \( A \) opposite side \( a ).

Solution:

To find angle \( A\), we will use the cosine rule for angles:
\[

\cos A = -\cos B \cos C + \sin B \sin C \cos a

\]

First, we need to calculate \( \cos B \) and \( \cos C\) using the cosine rule for sides:
\[

\cos B = \frac{\cos a - \cos c \cos a}{\sin c \sin a}

\]

\[

\cos C = \frac{\cos a - \cos b \cos a}{\sin b \sin a}

\]

Calculating \( A \):

1. Calculate \( \cos a \):

\[

\cos a = \cos(60"\circ) = 0.5
\]

2. Calculate \(\cos b \):



\[
\cos b = \cos(70"\circ) \approx 0.3420

?3]. Calculate \(\cos c \):

thos ¢ = \cos(80™\circ) \approx 0.1736

\]

Substituting these values into the formula for \( A \):

tE:os A =-0.3420 \times 0.1736 + 0.9410 \times 0.9848 \times 0.5
\C]Jalculating each component yields:

t[-:os A\approx -0.0595 + 0.4640 \approx 0.4045

\]

Thus, \( A \approx \cos”{-1}(0.4045) \approx 66.3"\circ \).

Problem 2: Area of a Spherical Triangle

Problem Statement: Calculate the area of a spherical triangle with angles \( A = 50" \circ \), \( B =
60"\circ \), and \( C = 70" \circ \).

Solution:

The area \( A ) of a spherical triangle can be found using the formula:
\[

\text{Area} = E - \pi

\]

where \( E \) is the sum of the angles in radians.

1. Convert angles to radians:

-\( A = 50"\circ \times \frac{\pi} {180} \approx 0.8727\)
-\( B = 60™\circ \times \frac{\pi} {180} \approx 1.0472)
-\( C = 70" \circ \times \frac{\pi} {180} \approx 1.2217)

2. Sum the angles:

\[

E=A+ B + C\approx 0.8727 + 1.0472 + 1.2217 \approx 3.1416
\]

3. Calculate the area:

\[

\text{Area} = E - \pi \approx 3.1416 - 3.1416 = 0
\]

This indicates the spherical triangle's area is approximately zero, a result of the angles being exactly
equal to \( \pi \) radians, which forms a degenerate triangle.



Problem 3: Distance Between Two Points on a Sphere

Problem Statement: Find the distance between two points on the surface of the Earth (approximated
as a sphere) located at latitudes \( 30"~\circ N \) and \( 60"\circ N \) and a constant longitude.

Solution:

To find the distance \( d \) between two points on a sphere, we can use the formula:

\[

d = R\cdot \theta

\]

where \( R\) is the radius of the sphere (roughly \( 6371 \) km for Earth) and \( \theta \) is the
angular separation in radians.

1. Calculate the angular separation:

ti[:heta = 60" \circ - 30" \circ = 30" \circ

\C]onverting to radians:

&heta = 30" \circ \times \frac{\pi} {180} = \frac{\pi} {6}
\]

2. Calculate the distance:

\[

d = 6371 \cdot \frac{\pi} {6} \approx 6371 \cdot 0.5236 \approx 3335.5 \text{ km}
\]

Conclusion

Spherical trigonometry problems provide intriguing challenges that require a solid understanding of
spherical geometry, relationships between angles and sides, and the application of various formulas.
By grasping these concepts and practicing different problems, one can gain proficiency in solving
real-world issues that involve spherical shapes, such as navigation, astronomy, and geospatial
analysis. As we have explored, each problem can be addressed systematically using the right
formulas, leading to insightful solutions that deepen our understanding of spherical trigonometry.

Frequently Asked Questions

What is spherical trigonometry and how does it differ from
plane trigonometry?

Spherical trigonometry deals with the relationships between angles and sides of spherical triangles,
which are formed on the surface of a sphere. Unlike plane trigonometry, which operates in two
dimensions, spherical trigonometry accounts for the curvature of the sphere, making its laws and
formulas distinct.



How do you solve a spherical triangle given two sides and the
included angle?

To solve a spherical triangle given two sides (A and B) and the included angle (C), you can use the
spherical law of cosines: cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C). Here, c is the third side
opposite angle C.

What is the spherical law of sines and how is it applied?

The spherical law of sines states that the ratio of the lengths of sides to the sines of their opposite
angles is constant in a spherical triangle. It can be expressed as sin(A)/a = sin(B)/b = sin(C)/c. This
can be applied to find unknown angles or sides when given sufficient information.

Can you provide a step-by-step solution to a spherical triangle
problem?

Sure! For a spherical triangle with sides a = 60°, b = 70°, and angle A = 45°, use the spherical law
of cosines to find side c: cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(A). Calculate cos(c) and then find c
by taking the arccosine.

What are the common applications of spherical trigonometry?

Spherical trigonometry is commonly used in navigation, astronomy, geodesy, and in the calculation
of distances and angles on the Earth’s surface, which is approximately a sphere.

How do you calculate the area of a spherical triangle?

The area of a spherical triangle can be calculated using the formula: Area = (A + B + C - ) R?,
where A, B, and C are the angles of the triangle in radians, and R is the radius of the sphere.

What is the significance of the spherical excess in spherical
trigonometry?

The spherical excess (E) is the amount by which the sum of the angles of a spherical triangle
exceeds 1 radians (180°). It is significant because it directly relates to the area of the triangle on the
sphere and is used in various calculations involving spherical triangles.

How can spherical trigonometry be used to calculate distances
between two points on the Earth?

To calculate the distance between two points on the Earth using spherical trigonometry, you can
employ the haversine formula or spherical law of cosines. Given the latitudes and longitudes of the
two points, convert them to radians, then use the spherical law of cosines: d = R arccos(sin(lat1)
sin(lat2) + cos(latl) cos(lat2) cos(lon2 - lon1)).
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Explore essential spherical trigonometry problems with solutions to enhance your understanding.
Master concepts and improve your skills today! Learn more.
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