Recursive Digit Sum Hackerrank Solution

C++

Recursive Digit
Sum

Recursive digit sum HackerRank solution is a problem that challenges participants to
understand the concept of recursion while effectively manipulating numbers. The problem is part of
the HackerRank platform, which offers a wide array of coding challenges to enhance programming
skills. In this article, we will explore the recursive digit sum problem, provide an in-depth
explanation of the solution, and discuss the implementation in various programming languages.

Understanding the Problem Statement

The recursive digit sum problem requires you to compute a single-digit number derived from a given
integer. The process involves repeatedly summing the digits of the number until you arrive at a
single-digit result. The challenge becomes more interesting when you consider large numbers, as
they may require multiple iterations of summation.

Problem Definition

The task can be defined as follows:

1. You are given an integer, ‘'n’, and a radix, 'k .
2. You will first multiply 'n" by 'k and then recursively sum the digits of the result.
3. The process continues until a single-digit number is obtained.

For example, if 'n = 9875 and 'k = 4", the first step would be to calculate 9875 4 = 39500°. The
next step is to sum the digits of “39500°, which yields '3+ 9+ 5+ 0+ 0=17". Since 17 isnota
single digit, we sum the digits of 17", resulting in "1 + 7 = 8". Therefore, the final result for this
example would be "8".

Steps to Solve the Problem

To effectively solve the recursive digit sum problem, follow these steps:

1. Read the inputs: Read the values of 'n" and 'k'.
2. Calculate the initial product: Multiply n" by 'k to obtain a new number, "product .

3. Implement a recursive function: Create a function that sums the digits of a number and
checks if the result is a single digit.

4. Return the result: Once a single-digit result is achieved, return it.

Recursive Function Explanation

The recursive function is crucial in this problem. It works as follows:

- Base Case: If the number is a single digit, return that number.

- Recursive Case: If the number is greater than 9, convert the number to a string, split it into its
digits, convert them back to integers, and sum them. Then call the function recursively with this sum
until a single digit is reached.

Pseudocode for the Solution

Here’s a simple pseudocode representation of the recursive digit sum solution:

function recursive digit sum(n, k):
product =nk
return digit sum(product)

function digit sum(num):
if num < 10:

return num

else:

sum =0

while num > 0:

sum +=num % 10

num = num // 10

return digit sum(sum)

Implementing the Solution in Different Languages

Below, we provide implementations of the recursive digit sum solution in Python and Java.

Python Implementation

ANRNEN

python

def recursive digit sum(n, k):
product =nk

return digit sum(product)

def digit sum(num):

if num < 10:

return num

else:

total = 0

while num > 0:

total +=num % 10
num //= 10

return digit sum(total)

Example usage

n = 9875

k=4

result = recursive digit sum(n, k)
print(result) Output: 8

Java Implementation

" java

public class RecursiveDigitSum {
public static void main(String[] args) {
int n = 9875;

intk = 4;

int result = recursiveDigitSum(n, k);
System.out.println(result); // Output: 8
}

public static int recursiveDigitSum(int n, int k) {
int product = n k;
return digitSum(product);

}

public static int digitSum(int num) {
if (num < 10) {

return num;

} else {

int total = 0;

while (num > 0) {
total += num % 10;
num /= 10;

}

return digitSum(total);
}

}

}

Complexity Analysis

Understanding the complexity of the recursive digit sum solution is essential for evaluating its
efficiency.

Time Complexity

The time complexity can be analyzed as follows:

- The digit summation takes O(d) time, where d is the number of digits in the number.
- Since the number of digits reduces logarithmically with each recursive call, the overall time
complexity can be approximated to O(log n) for each digit summation until a single digit is reached.

Space Complexity

The space complexity is primarily due to the recursion stack, which is O(log n) due to the reduction
in the number of digits with each recursive call.

Conclusion

The recursive digit sum HackerRank solution provides an excellent exercise in recursion and
number manipulation. By following the steps outlined in this article, understanding the problem, and
implementing it in various programming languages, you can enhance your coding skills and prepare
for similar challenges in the future. Practicing with such problems on platforms like HackerRank not
only sharpens your algorithmic thinking but also improves your problem-solving capabilities in real-
world applications.

Frequently Asked Questions

What is the recursive digit sum problem in HackerRank?

The recursive digit sum problem requires calculating the repeated sum of digits of a number until a
single digit is obtained, using a recursive approach.

How do you approach solving the recursive digit sum problem?

To solve the recursive digit sum problem, repeatedly sum the digits of the number until the result is
a single digit. This can be done using a recursive function or an iterative approach.

What is an efficient way to implement the recursive digit sum
in Python?

You can create a recursive function that takes an integer, converts it to a string to sum its digits, and
calls itself with the new sum until a single digit is achieved.

What are the input constraints for the recursive digit sum
problem on HackerRank?

The input typically consists of two integers, n (the number to compute the sum for) and k (the
number of times to concatenate n). The constraints can vary, but n can be very large, requiring
careful handling.

Can you explain how to handle large numbers in the recursive
digit sum problem?

For large numbers, you can compute the digit sum using modular arithmetic to avoid overflow and
ensure efficient calculations without needing to handle the entire number as a string.

What is the expected output of the recursive digit sum
function?

The expected output is a single digit integer that represents the final recursive digit sum of the
given number after processing.

How does the recursive digit sum relate to digital roots?

The recursive digit sum is essentially the same as finding the digital root of a number, which can be
calculated using the formula (n-1) % 9 + 1 forn > 0.

What are common pitfalls to avoid when implementing the
recursive digit sum?

Common pitfalls include not handling large numbers correctly, incorrect base cases in recursion,
and failing to account for edge cases like zero or negative numbers.

Find other PDF article:
https://soc.up.edu.ph/01-text/files?trackid=NZR60-6304 &title=10-day-no-sugar-diet.pdf

Recursive Digit Sum Hackerrank Solution

git clone --recursive [] git clone --recurse-submodules[]]
Jun 8, 2015 - J0000CSDN{OO00git clone --recursive [] git clone --recurse-submodules[0000000000000
0000000000000000DCSDNQOOD

linux[][Jcodeblock make: *** [all-recursive 1
Apr 9, 2012 - JJ000CSDNOJOMLinux{Jcodeblock [J00make: *** [all-recursive] (0 10000000000000000
O0000000D0000DOOCSDNOOO

makefile[J[J[Jprocess_begin: CreateProcess failed-CSDN[]]
Oct 1, 2008 - 0000CSDNOOOOmakefile[jd0process begin: CreateProcess failedj000000000000000000
0000000000000CSDNOOO

J00000Leaving directory(][]] - CSDN[
Jul 7, 2010 - J0000CSDNOODOO0OO0OLeaving directory]000000000000000OLinux/UnixO00000000000

[0gcc-4.7.10000000000make[jJ-CSDN[
Sep 23, 2012 - (J000CSDNOOO0O0gcc-4.7.10000000000makeI0000000000000000000C0000C0000C00
OCSDNOO

oralce[][] ORA-00604: error occurred at recursive SQL level 1
Sep 16, 2013 - JO0J0CSDN{OOoralce[][J ORA-00604: error occurred at recursive SQL level 10000000

0000000Oracle 000000 -

std :: experimental :: filesystem :: recursive directory iterator{][] ...
00000CSDNQOOO0std :: experimental :: filesystem :: recursive directory iterator(00000000000C0000C0
Uodootoobbobdooboobbood ..

MySQL With Recursive[][][] - CSDN[[]
Apr 16, 2022 - JJ000CSDNOO0OMySQL With Recursive[J00000000000C0000000000C00000000CSDNOON

make:*** [install -recursive]Error 1[JJ0J00-CSDNJ
Feb 22, 2011 - J0000CSDNOOOOmake:*** [install -recursive]Error 1[0000000000000000000000000000
aood -

k21000000 - CSDN[[
Jul 29, 2020 - 00000CSDNOO0Ck2100000000000C000000CCO00000C0000000CSDNOOD

git clone --recursive [] git clone --recurse-submodules[][]]]
Jun 8, 2015 - J0000CSDN{OOOOgit clone --recursive [] git clone --recurse-submodules 0000000000000
00000000000DOOOOOCSDNQOOO

https://soc.up.edu.ph/01-text/files?trackid=NZR60-6304&title=10-day-no-sugar-diet.pdf
https://soc.up.edu.ph/50-draft/pdf?dataid=pCv50-1961&title=recursive-digit-sum-hackerrank-solution.pdf

linux[][Jcodeblock [J[J[[Jmake: *** [all-recursive] [][] 1

Apr 9, 2012 - JJ000CSDNOJONLinuxJcodeblock [JJ00make: *** [all-recursive] JJ 10000000000000000O
00000000000DO000CSDNOOO

makefile[J[[Jprocess_begin: CreateProcess failed-CSDN[]]
Oct 1, 2008 - J0000CSDNOO0Omakefile[J0process begin: CreateProcess failed000000000000000000O
0000000CO000DCSDNQOOD

J00000Leaving directory(][]] - CSDN[
Jul 7, 2010 - Q0000CSDNOO0O00O00O0OLeaving directoryJ00000000C00C0C0COLinux/UnixOQ0O000O0O0OO

O0gce-4.7.10000000000makeJ0-CSDN[[

Sep 23, 2012 - (0000CSDNONOOOOgee-4.7.1000000000OmakeI000000CO0O0O0CO0O0O00ODO0OC00000
OCSDNOOO

oralce[][] ORA-00604: error occurred at recursive SQL level 1
Sep 16, 2013 - JJ0J0CSDN{JOOoralce[][J ORA-00604: error occurred at recursive SQL level 10000000

0000000Oracle 000000 -

std :: experimental :: filesystem :: recursive_directory_iterator{]] ...
O0000CSDNOOOOstd :: experimental :: filesystem :: recursive directory iterator(J000000C00C0C0C0COC0
O0000000000CD00000000ODOOCSDNOOO

MySQL With Recursive[][][] - CSDN[I]
Apr 16, 2022 - [0J000CSDNOI00MySQL With Recursive[J0000000000C000000000CCO0000000CSDNQOOO

make:*** [install -recursive]lError 1[JJJJ000-CSDN
Feb 22, 2011 - J0000CSDNOOOOmake:*** [install -recursive]Error 1[0000000000000000000000000000
aooa ...

k21000000 - CSDN[
Jul 29, 2020 - 0O000CSDNOO00k2 100000000000C000000CC000000C0000000CSDNOON

Master the recursive digit sum problem with our comprehensive HackerRank solution. Discover how
to efficiently solve challenges and enhance your coding skills!

Back to Home

https://soc.up.edu.ph

