Object Oriented Programming Java Tutorial

Eelipse File Edit Sowes Relector Mevigals Search Profect Bun Windsw Help 100N Sal 306 PM A Les 0 I

b ®r w QDG @G Mg P

Y Pachageilz | ™ [i P]| ks v

o il piablie ¢lass Pen |

String type = “gel";

g String color = “blue”;
— imt point = 18;

static boolean clicked = false;

public static wvodd click() { LR
clicked = trwi}

pablic static wodd umclicki) {
clicked = false:
I

I this helphuy *= ¥

Object-oriented programming Java tutorial offers a structured approach to programming that is based
on the concept of "objects." These objects can represent real-world entities, encapsulating both data
and behavior. Java, being a fully object-oriented language, provides a robust framework for
developing applications using this paradigm. In this tutorial, we will explore the core concepts of
object-oriented programming (OOP) in Java, delve into its principles, and provide practical examples
to help you understand how to implement OOP effectively.

Understanding Object-Oriented Programming

Object-oriented programming is a programming paradigm that relies on the concept of objects.
Objects are instances of classes, which are blueprints for creating objects. OOP is centered around
four main principles: encapsulation, inheritance, polymorphism, and abstraction. These principles
enable developers to create modular, reusable, and maintainable code.

1. Principles of Object-Oriented Programming

To grasp the power of OOP, it's essential to understand its four fundamental principles:

- Encapsulation: This principle refers to the bundling of data (attributes) and methods (functions) that
operate on the data into a single unit known as a class. Encapsulation restricts direct access to some
of an object's components, which can prevent the accidental modification of data. It is often
implemented using access modifiers.

- Inheritance: Inheritance allows one class (the child class) to inherit the attributes and methods of
another class (the parent class). This promotes code reusability and establishes a hierarchical
relationship between classes. For example, a class "Animal’ can have subclasses like "Dog" and
“Cat’.

- Polymorphism: Polymorphism means "many forms." In Java, it allows objects to be treated as
instances of their parent class. The two types of polymorphism are compile-time (method
overloading) and runtime (method overriding). This enables a single interface to control access to a
general class of actions.

- Abstraction: Abstraction is the process of hiding the complex implementation details and showing
only the essential features of the object. In Java, abstraction is achieved using abstract classes and
interfaces.

Setting Up Your Java Environment

Before diving into OOP concepts, you need to set up your Java development environment. Here’s how
to do that:

1. Download and Install Java Development Kit (JDK):

- Visit the official Oracle website or Open)DK.

- Download the latest version of JDK suitable for your operating system.
- Follow the installation instructions.

2. Set Up an Integrated Development Environment (IDE):

- Popular IDEs for Java include Eclipse, Intelli) IDEA, and NetBeans.
- Download and install your chosen IDE.

- Configure the IDE to recognize the JDK.

3. Create Your First Java Project:
- Open your IDE and create a new Java project.
- Set up your project structure and create your first Java class.

Creating Classes and Objects

Now that your environment is set up, let’s start with the basic building blocks of OOP: classes and
objects.

1. Defining a Class

A class is defined using the "class™ keyword. Below is a simple example of a class definition:

“Tjava

public class Car {
/I Attributes
String color;
String model,;

int year;

// Method

void displayDetails() {

System.out.printIn("Car Model: " + model + ", Color: " + color + ", Year: " + year);
}

}

In the example above, we defined a class named "Car" with three attributes: “color’, “model’, and
“year'. We also created a method “displayDetails()” to print the car's details.

2. Creating Objects

An object is an instance of a class. You can create an object of the "Car’ class as follows:

“java

public class Main {

public static void main(String[] args) {
// Creating an object of Car

Car myCar = new Car();

myCar.color = "Red";

myCar.model = "Toyota";

myCar.year = 2020;

// Calling the method
myCar.displayDetails();
}

}

In this example, we created an object named "myCar” and assigned values to its attributes. Then, we
called the "displayDetails()” method to print the car's information.

Encapsulation in Java

Encapsulation is a key concept in OOP, and it can be implemented in Java using access modifiers. The
most common access modifiers are “private’, “public’, and "protected’.

1. Implementing Encapsulation

Here's how you can implement encapsulation in Java:

“java

public class Student {
/[Private attributes
private String name;
private int age;

/] Public getter and setter methods
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
if (age > 0) {

this.age = age;

}

}

}

In this example, the attributes "'name™ and "age" are declared as "private'. This means they cannot
be accessed directly from outside the class. Instead, public getter and setter methods are provided to
access and modify the values.

Inheritance in Java

Inheritance allows classes to inherit properties and methods from other classes, promoting code
reusability.

1. Implementing Inheritance

Here's an example of inheritance in Java:

“java

/] Parent class

public class Animal {

void eat() {

System.out.printIn("This animal eats food.");
}

}

// Child class

public class Dog extends Animal {
void bark() {
System.out.printin("The dog barks.");

}

In this example, the "Dog" class inherits from the “Animal” class. This means the "Dog" class can
access the “eat()" method from the “Animal class.

2. Using Inheritance

To use these classes, you can create a "main’ method:

“java

public class Main {

public static void main(String[] args) {
Dog myDog = new Dog();
myDog.eat(); // Inherited method
myDog.bark(); // Dog's own method

}

}

When you run this code, it will display:

This animal eats food.
The dog barks.

Polymorphism in Java

Polymorphism allows methods to do different things based on the object that it is acting upon.

1. Method Overloading

Method overloading is a form of compile-time polymorphism. It allows multiple methods in the same
class to have the same name but different parameters.

““java

public class MathOperations {
int add(int a, int b) {

return a + b;

}

double add(double a, double b) {
return a + b;

}

In this example, the "add” method is overloaded with two different parameter types.

2. Method Overriding

Method overriding allows a subclass to provide a specific implementation of a method that is already
defined in its superclass.

“java

// Parent class

public class Vehicle {

void start() {
System.out.printin("Vehicle is starting.");
}

}

/I Child class

public class Bike extends Vehicle {
@Override

void start() {
System.out.printin("Bike is starting.");
}

}

In this case, the "Bike" class overrides the “start”™ method of the “Vehicle™ class.

3. Using Polymorphism

You can create a method that accepts a reference of the parent class:

“java

public class Main {

public static void main(String[] args) {

Vehicle myVehicle = new Bike();
myVehicle.start(); // Calls the overridden method
}

}

This will output:

Bike is starting.

Abstraction in Java

Abstraction allows you to define abstract classes and interfaces that represent a contract for other
classes.

1. Abstract Classes

An abstract class cannot be instantiated and can contain abstract methods (without a body) and
concrete methods (with a body).

“Tjava
abstract class Shape {
abstract void draw(); // Abstract method

void display() {
System.out.printin("Displaying shape.");
}

}

class Circle extends Shape {
@Override

void draw() {
System.out.printin("Drawing a circle.");
}

}

2. Interfaces

An interface is a reference type in Java, similar to a class that can contain only constants, method
signatures, default methods, static methods, and nested types.

“Tjava

interface Animal {

void sound(); // Abstract method
}

class Cat implements Animal {
@Override

public void sound() {
System.out.printin("Meow");

}

}

3. Using Abstraction

You can use the classes and interfaces created above as follows:

“java

public class Main {

public static void main(String[] args) {
Shape myShape = new Circle();
myShape

Frequently Asked Questions

What is Object-Oriented Programming (OOP) in Java?

Object-Oriented Programming (OOP) in Java is a programming paradigm that uses 'objects' to design
applications. It is based on several key principles including encapsulation, inheritance, polymorphism,
and abstraction.

What are the four main principles of OOP in Java?

The four main principles of OOP in Java are: Encapsulation (bundling data and methods), Inheritance
(creating new classes based on existing ones), Polymorphism (using a single interface to represent
different underlying forms), and Abstraction (hiding complex reality while exposing only the necessary
parts).

How do you create a class in Java?

In Java, a class is created using the 'class' keyword followed by the class name and a pair of curly
braces. For example: “class MyClass { // class body }".

What is encapsulation and how is it implemented in Java?

Encapsulation is the principle of restricting access to certain details of an object. In Java, it is
implemented using access modifiers like private, protected, and public to control visibility and access
to class members.

What is the difference between inheritance and polymorphism
in Java?

Inheritance allows a new class to inherit properties and methods from an existing class, promoting
code reuse. Polymorphism allows methods to be defined in multiple forms, enabling a single interface
to represent different underlying forms.

Can you explain how constructors work in Java?

Constructors in Java are special methods that are called when an object is instantiated. They have the
same name as the class and do not have a return type. Constructors can be overloaded to create
objects in different ways.

What is an interface in Java and how does it differ from an
abstract class?

An interface in Java is a reference type that can contain only constants, method signatures, default
methods, static methods, and nested types. It cannot contain instance fields or constructors. Unlike
an abstract class, a class can implement multiple interfaces, allowing for a form of multiple
inheritance.

How do you achieve abstraction in Java?

Abstraction in Java is achieved through abstract classes and interfaces. An abstract class can have
both abstract methods (without implementation) and concrete methods (with implementation).
Interfaces provide a way to define methods without implementing them, allowing classes to
implement the methods in their own way.

Find other PDF article:

https://soc.up.edu.ph/18-piece/files?docid=PRi47-4678 &title=donald-miller-a-thousand-miles.pdf

Object Oriented Programming Java Tutorial

javascript - What does [object Object] mean? - Stack Overflow
[object Object] is the default toString representation of an object in javascript. If you want to know
the properties of your object, just foreach over it like this:

JSON.stringify returns " [object Object]" instead of the contents of ...
May 11, 2013 - Here I'm creating a JavaScript object and converting it to a JSON string, but
JSON.stringify returns " [object Object]" in this case, instead of displaying the contents of the ...

javascript - How to iterate a Map () object? - Stack Overflow
Feb 4, 2019 - T have a Map() object that I need to iterate, so I can get the day of the week and a

selected hour. The code below doesn't work, because ...

Excel VBA Run Time Error '424' object required - Stack Overflow
Jan 26, 2014 - I am totally new in VBA and coding in general, am trying to get data from cells from
the same workbook (get framework path ...) and then to start application (QTP) and run tests. I ...

How can I display a JavaScript object? - Stack Overflow
How do I display the content of a JavaScript object in a string format like when we alert a variable?
The same formatted way I want to display an object.

Object reference not set to an instance of an object
The term instance of an object refers to an object that has been created using the syntax new. When
you call new to initialize an object, an unused memory location is allocated to store a ...

How to convert object into string in javascript? - Stack Overflow

https://soc.up.edu.ph/18-piece/files?docid=PRi47-4678&title=donald-miller-a-thousand-miles.pdf
https://soc.up.edu.ph/44-slide/Book?docid=FHP22-5077&title=object-oriented-programming-java-tutorial.pdf

Jun 2, 2019 - But in a javascript Object you can't have a kebab-case key, unless it's in quotes. So if
someone is looking to display an Object in a js syntax highlighter, just remove the dash from ...

'‘NoneType' object is not subscriptable? - Stack Overflow
Sep 18, 2013 - 22 The print() function returns None. You are trying to index None. You can not,
because 'NoneType' object is not subscriptable. Put the [0] inside the brackets. Now you're ...

The difference between Classes, Objects, and Instances
Aug 1, 2009 - The difference between an object and an instance is, an object is a thing and an

instance is a relation. In other words, instance describes the relation of an object to the class ...

Multiple -and -or in PowerShell Where-Object statement
Multiple -and -or in PowerShell Where-Object statement Asked 11 years ago Modified 2 years, 11
months ago Viewed 415k times

javascript - What does [object Object] mean? - Stack Overflow

[object Object] is the default toString representation of an object in javascript. If you want to know
the properties of your object, just foreach over it like this:

JSON stringify returns " [object Object]" instead of the contents of ...
May 11, 2013 - Here I'm creating a JavaScript object and converting it to a JSON string, but
JSON.stringify returns " [object Object]" in this case, instead of displaying the contents of the ...

Jjavascript - How to iterate a Map () object? - Stack Overflow
Feb 4, 2019 - T have a Map() object that I need to iterate, so I can get the day of the week and a
selected hour. The code below doesn't work, because ...

Excel VBA Run Time Error '424' object required - Stack Overflow
Jan 26, 2014 - I am totally new in VBA and coding in general, am trying to get data from cells from
the same workbook (get framework path ...) and then to start application (QTP) and run tests. I ...

How can I display a JavaScript object? - Stack Overflow
How do I display the content of a JavaScript object in a string format like when we alert a variable?
The same formatted way I want to display an object.

Object reference not set to an instance of an object
The term instance of an object refers to an object that has been created using the syntax new. When
you call new to initialize an object, an unused memory location is allocated to store a copy ...

How to convert object into string in javascript? - Stack Overflow
Jun 2, 2019 - But in a javascript Object you can't have a kebab-case key, unless it's in quotes. So if
someone is looking to display an Object in a js syntax highlighter, just remove the dash from the ...

‘NoneType' object is not subscriptable? - Stack Overflow
Sep 18, 2013 - 22 The print() function returns None. You are trying to index None. You can not,
because 'NoneType' object is not subscriptable. Put the [0] inside the brackets. Now you're ...

The difference between Classes, Objects, and Instances
Aug 1, 2009 - The difference between an object and an instance is, an object is a thing and an
instance is a relation. In other words, instance describes the relation of an object to the class that ...

Multiple -and -or in PowerShell Where-Object statement
Multiple -and -or in PowerShell Where-Object statement Asked 11 years ago Modified 2 years, 11
months ago Viewed 415k times

Master the fundamentals of object oriented programming with our comprehensive Java tutorial.
Discover how to enhance your coding skills today! Learn more!

Back to Home

https://soc.up.edu.ph

