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Neo4j Cypher Cheat Sheet: In the realm of graph databases, Neo4j stands out as one of
the most powerful and versatile systems available. Its query language, Cypher, allows
developers and data analysts to interact with graph data efficiently and intuitively. This
cheat sheet serves as a comprehensive guide to the essential Cypher syntax, functions,
and patterns, making it easier for both beginners and seasoned professionals to leverage
the full potential of Neo4;j.

Basics of Cypher Syntax

Understanding the foundational elements of Cypher is crucial for writing effective queries.
Cypher syntax is designed to be human-readable, resembling natural language, which
makes it accessible.

Nodes and Relationships

In Neo4j, data is represented as nodes and relationships.

- Nodes: Represent entities (e.g., people, places, events).
- Relationships: Connect nodes and represent the associations between them.



Basic Query Structure

A Cypher query typically follows this structure:

MATCH (nodel:Labell)-[relationship:TYPE]->(node2:Label2)
RETURN nodel, relationship, node2

- "MATCH": Used to specify the pattern to search for in the graph.
- 'RETURN : Specifies what to return from the query.

Creating Nodes and Relationships

Creating data in Neo4j is straightforward. Use the 'CREATE" command to build nodes and
relationships.

Creating Nodes

To create a single node, you can use the following syntax:
QP\{EATE (n:Label {propertyKey: 'value'})

Example:

\C\f\{EATE (p:Person {name: 'Alice’, age: 30})

For multiple nodes, you can separate them with commas:

CREATE (p:Person {name: 'Bob’, age: 25}), (p:Person {name: 'Charlie’, age: 35})

Creating Relationships

Relationships can be created between existing nodes using:

MATCH (a:Labell), (b:Label2)
WHERE a.propertyKey = 'value' AND b.propertyKey = 'value'



CREATE (a)-[r:RELATIONSHIP TYPE]->(b)
Example:

MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})
CREATE (a)-[:FRIENDS WITH]->(b)

Retrieving Data

Retrieving data from Neo4j can be done using various queries depending on the required
information.

Basic Retrieval

To retrieve all nodes of a specific label:

MATCH (n:Label)
RETURN n

To return specific properties:

MATCH (n:Label)
RETURN n.propertyKey

Using WHERE Clauses

The "WHERE' clause allows for filtering results:

MATCH (n:Label)
WHERE n.propertyKey = 'value'
RETURN n

Example:

MATCH (p:Person)



WHERE p.age > 30
RETURN p.name, p.age

Aggregation Functions

Cypher supports several aggregation functions:

- "COUNT() : Counts the number of elements.

- 'SUM() : Computes the sum of a numerical property.

- "AVG() : Computes the average of a numerical property.
- "MIN() : Finds the minimum value.

- "MAX() : Finds the maximum value.

Example:

MATCH (p:Person)
RETURN COUNT(p) AS totalPersons, AVG(p.age) AS averageAge

Updating Data

Updating existing nodes and relationships is crucial for maintaining accurate data.
Updating Properties
To update properties of a node:

MATCH (n:Label {propertyKey: 'value'})
SET n.propertyKey = 'newValue'

Example:

MATCH (p:Person {name: 'Alice'})
SET p.age = 31

Deleting Nodes and Relationships



Deleting data is straightforward but should be done cautiously.

- Deleting Relationships:

MATCH (a:Labell)-[r:RELATIONSHIP TYPE]->(b:Label2)
DELETE r

- Deleting Nodes:

To delete a node, it must not have any relationships:

MATCH (n:Label {propertyKey: 'value'})
DELETE n

If the node has relationships, you can either delete the relationships first or use "'DETACH
DELETE:

MATCH (n:Label {propertyKey: 'value'})
DETACH DELETE n

Advanced Queries

Once you are comfortable with the basics, you can explore advanced querying techniques.
Pattern Comprehension
Pattern comprehension allows for complex data retrieval:

MATCH (a:Labell)-[r:TYPE]->(b:Label2)
RETURN [x IN collect(b.name) WHERE x STARTS WITH 'A'] AS namesStartingWithA

Using WITH Clause

The "WITH" clause is useful for chaining multiple operations:

MATCH (p:Person)



WITH p
WHERE p.age > 30
RETURN p.name

Indexes and Constraints

Indexes improve query performance, while constraints ensure data integrity.

Creating Indexes

To create an index on a property:
CREATE INDEX ON :Label(propertyKey)
Example:

CREATE INDEX ON :Person(name)

Creating Constraints

To ensure uniqueness:
CREATE CONSTRAINT ON (n:Label) ASSERT n.propertyKey IS UNIQUE
Example:

CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE

Using APOC Procedures

APOC (Awesome Procedures on Cypher) provides a set of utilities to enhance Cypher's
capabilities.



Commonly Used APOC Procedures

- apoc.help(): Displays available procedures.
- apoc.load.json(): Loads JSON data from a URL.
- apoc.export.csv(): Exports data to CSV format.

Example of loading JSON data:

CALL apoc.load.json('http://example.com/data.json') YIELD value
CREATE (n:Node {propertyKey: value.propertyKey})

Conclusion

The Neo4j Cypher Cheat Sheet encapsulates the essential commands and constructs
needed to navigate the powerful capabilities of Neo4j effectively. By mastering these
commands, users can create, retrieve, update, and delete graph data with ease. As one
delves deeper into the intricacies of Cypher, the potential for data analysis and
visualization becomes boundless, allowing for innovative solutions across various domains.
Whether you are a newcomer or an experienced developer, this cheat sheet serves as a
valuable resource in your graph database journey.

Frequently Asked Questions

What is a Neo4j Cypher cheat sheet?

A Neo4j Cypher cheat sheet is a quick reference guide that summarizes the syntax and
commands used in Cypher, the query language for Neo4j, allowing users to efficiently
write and understand graph queries.

What are some common Cypher commands included in
the cheat sheet?

Common Cypher commands include MATCH, CREATE, DELETE, SET, RETURN, and
WHERE, which are used for querying, creating, updating, and deleting data in a Neo4j
graph database.

How can I use the MATCH command in Cypher?

The MATCH command is used to search for patterns in the graph. For example, 'MATCH
(n:Person) RETURN n;' retrieves all nodes labeled 'Person'.



What is the purpose of the RETURN clause in Cypher?

The RETURN clause specifies which data to return from a query. It can be used to return
nodes, relationships, or specific properties, such as 'RETURN n.name' to return the names
of nodes.

Can the Cypher cheat sheet help with performance
optimization?

Yes, the Cypher cheat sheet often includes tips on writing efficient queries, such as using
indexes, avoiding Cartesian products, and leveraging the WHERE clause effectively.

How do I delete nodes and relationships in Cypher?

To delete a node or relationship, you can use the DELETE command. For example,
'MATCH (n:Person {name: 'John'}) DELETE n;' deletes the node with the name 'John'. For
relationships, you would first MATCH the relationship before deleting it.

Where can I find an up-to-date Neo4j Cypher cheat

sheet?

An up-to-date Neo4j Cypher cheat sheet can be found on the official Neo4j website or
GitHub repositories, as well as in developer documentation and community resources.
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Unlock the power of Neo4j with our comprehensive Cypher cheat sheet! Discover how to master
queries and enhance your database skills. Learn more now!
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