Neo4j Cypher Cheat Sheet

Spatial Cypher Cheat Sheet - Using Neod] With Python

Weariieg 'Wish Openfires thiap Dats

Neo4j Cypher Cheat Sheet: In the realm of graph databases, Neo4j stands out as one of
the most powerful and versatile systems available. Its query language, Cypher, allows
developers and data analysts to interact with graph data efficiently and intuitively. This
cheat sheet serves as a comprehensive guide to the essential Cypher syntax, functions,
and patterns, making it easier for both beginners and seasoned professionals to leverage
the full potential of Neo4;j.

Basics of Cypher Syntax

Understanding the foundational elements of Cypher is crucial for writing effective queries.
Cypher syntax is designed to be human-readable, resembling natural language, which
makes it accessible.

Nodes and Relationships

In Neo4j, data is represented as nodes and relationships.

- Nodes: Represent entities (e.g., people, places, events).
- Relationships: Connect nodes and represent the associations between them.

Basic Query Structure

A Cypher query typically follows this structure:

MATCH (nodel:Labell)-[relationship:TYPE]->(node2:Label2)
RETURN nodel, relationship, node2

- "MATCH": Used to specify the pattern to search for in the graph.
- 'RETURN : Specifies what to return from the query.

Creating Nodes and Relationships

Creating data in Neo4j is straightforward. Use the 'CREATE" command to build nodes and
relationships.

Creating Nodes

To create a single node, you can use the following syntax:
QP\{EATE (n:Label {propertyKey: 'value'})

Example:

\C\f\{EATE (p:Person {name: 'Alice’, age: 30})

For multiple nodes, you can separate them with commas:

CREATE (p:Person {name: 'Bob’, age: 25}), (p:Person {name: 'Charlie’, age: 35})

Creating Relationships

Relationships can be created between existing nodes using:

MATCH (a:Labell), (b:Label2)
WHERE a.propertyKey = 'value' AND b.propertyKey = 'value'

CREATE (a)-[r:RELATIONSHIP TYPE]->(b)
Example:

MATCH (a:Person {name: 'Alice'}), (b:Person {name: 'Bob'})
CREATE (a)-[:FRIENDS WITH]->(b)

Retrieving Data

Retrieving data from Neo4j can be done using various queries depending on the required
information.

Basic Retrieval

To retrieve all nodes of a specific label:

MATCH (n:Label)
RETURN n

To return specific properties:

MATCH (n:Label)
RETURN n.propertyKey

Using WHERE Clauses

The "WHERE' clause allows for filtering results:

MATCH (n:Label)
WHERE n.propertyKey = 'value'
RETURN n

Example:

MATCH (p:Person)

WHERE p.age > 30
RETURN p.name, p.age

Aggregation Functions

Cypher supports several aggregation functions:

- "COUNT() : Counts the number of elements.

- 'SUM() : Computes the sum of a numerical property.

- "AVG() : Computes the average of a numerical property.
- "MIN() : Finds the minimum value.

- "MAX() : Finds the maximum value.

Example:

MATCH (p:Person)
RETURN COUNT(p) AS totalPersons, AVG(p.age) AS averageAge

Updating Data

Updating existing nodes and relationships is crucial for maintaining accurate data.
Updating Properties
To update properties of a node:

MATCH (n:Label {propertyKey: 'value'})
SET n.propertyKey = 'newValue'

Example:

MATCH (p:Person {name: 'Alice'})
SET p.age = 31

Deleting Nodes and Relationships

Deleting data is straightforward but should be done cautiously.

- Deleting Relationships:

MATCH (a:Labell)-[r:RELATIONSHIP TYPE]->(b:Label2)
DELETE r

- Deleting Nodes:

To delete a node, it must not have any relationships:

MATCH (n:Label {propertyKey: 'value'})
DELETE n

If the node has relationships, you can either delete the relationships first or use "'DETACH
DELETE:

MATCH (n:Label {propertyKey: 'value'})
DETACH DELETE n

Advanced Queries

Once you are comfortable with the basics, you can explore advanced querying techniques.
Pattern Comprehension
Pattern comprehension allows for complex data retrieval:

MATCH (a:Labell)-[r:TYPE]->(b:Label2)
RETURN [x IN collect(b.name) WHERE x STARTS WITH 'A'] AS namesStartingWithA

Using WITH Clause

The "WITH" clause is useful for chaining multiple operations:

MATCH (p:Person)

WITH p
WHERE p.age > 30
RETURN p.name

Indexes and Constraints

Indexes improve query performance, while constraints ensure data integrity.

Creating Indexes

To create an index on a property:
CREATE INDEX ON :Label(propertyKey)
Example:

CREATE INDEX ON :Person(name)

Creating Constraints

To ensure uniqueness:
CREATE CONSTRAINT ON (n:Label) ASSERT n.propertyKey IS UNIQUE
Example:

CREATE CONSTRAINT ON (p:Person) ASSERT p.name IS UNIQUE

Using APOC Procedures

APOC (Awesome Procedures on Cypher) provides a set of utilities to enhance Cypher's
capabilities.

Commonly Used APOC Procedures

- apoc.help(): Displays available procedures.
- apoc.load.json(): Loads JSON data from a URL.
- apoc.export.csv(): Exports data to CSV format.

Example of loading JSON data:

CALL apoc.load.json('http://example.com/data.json') YIELD value
CREATE (n:Node {propertyKey: value.propertyKey})

Conclusion

The Neo4j Cypher Cheat Sheet encapsulates the essential commands and constructs
needed to navigate the powerful capabilities of Neo4j effectively. By mastering these
commands, users can create, retrieve, update, and delete graph data with ease. As one
delves deeper into the intricacies of Cypher, the potential for data analysis and
visualization becomes boundless, allowing for innovative solutions across various domains.
Whether you are a newcomer or an experienced developer, this cheat sheet serves as a
valuable resource in your graph database journey.

Frequently Asked Questions

What is a Neo4j Cypher cheat sheet?

A Neo4j Cypher cheat sheet is a quick reference guide that summarizes the syntax and
commands used in Cypher, the query language for Neo4j, allowing users to efficiently
write and understand graph queries.

What are some common Cypher commands included in
the cheat sheet?

Common Cypher commands include MATCH, CREATE, DELETE, SET, RETURN, and
WHERE, which are used for querying, creating, updating, and deleting data in a Neo4j
graph database.

How can I use the MATCH command in Cypher?

The MATCH command is used to search for patterns in the graph. For example, 'MATCH
(n:Person) RETURN n;' retrieves all nodes labeled 'Person'.

What is the purpose of the RETURN clause in Cypher?

The RETURN clause specifies which data to return from a query. It can be used to return
nodes, relationships, or specific properties, such as 'RETURN n.name' to return the names
of nodes.

Can the Cypher cheat sheet help with performance
optimization?

Yes, the Cypher cheat sheet often includes tips on writing efficient queries, such as using
indexes, avoiding Cartesian products, and leveraging the WHERE clause effectively.

How do I delete nodes and relationships in Cypher?

To delete a node or relationship, you can use the DELETE command. For example,
'MATCH (n:Person {name: 'John'}) DELETE n;' deletes the node with the name 'John'. For
relationships, you would first MATCH the relationship before deleting it.

Where can I find an up-to-date Neo4j Cypher cheat

sheet?

An up-to-date Neo4j Cypher cheat sheet can be found on the official Neo4j website or
GitHub repositories, as well as in developer documentation and community resources.

Find other PDF article:
https://soc.up.edu.ph/22-check/files?dataid=rDV15-1094 &title=fine-motor-skills-occupational-therap

y.pdf

Neo4j Cypher Cheat Sheet

000000neo4000 - OO
Neo4j Desktop[INeo4j Browser[J000I00000000000 Neo4j BloomO0O0O00000000Browser(000 OO0
OGraph App0000Graphxr(0000000

neo4jJ00000neo40000000 - 00
neo4j000000neo4j0000000 neo4;00000OONe04;0000000 0OOD 00O 8 OO0

neo4j vs dgraph vs cayley[[]00000 - 00
Neo4j I00000000000CO000DO0000O0000 DOONeo4) DO0O0OOCOOOOCOO0ODO00CO000DO000D0000 Dgraph
gooooooa ...

0000000000000 - 00
NebulaGraph J00000000000000000 shared-nothing OO0000000000000NebulaGraph 0000000000000
00000000 Raft 000000 -

https://soc.up.edu.ph/22-check/files?dataid=rDV15-1094&title=fine-motor-skills-occupational-therapy.pdf
https://soc.up.edu.ph/22-check/files?dataid=rDV15-1094&title=fine-motor-skills-occupational-therapy.pdf
https://soc.up.edu.ph/43-block/Book?title=neo4j-cypher-cheat-sheet.pdf&trackid=WDF80-6300

neo4;jJ100000000000000COOCO000CO -
neo4j(000000C0OC0O0COOC0O00OO0D LOOODOOCOOODOD 0oboophooooopoooneo4j0000OOCDO0DOOD0O000
ood ...

00000neo450000000000000C0OCO0
00000neo4jI0000000CCO0O000C000 COOOO0OOCOO0000OC0000neo4; 0000000000000

neo4j[Jdesktop[[[[lcommunity[J0000000 - 00
Bloom[Ineo4jJ0000000000000000000 DOOOOOCOOOOObleom 0000000000 O0OCOCOCOCOC0C0C000C000C0O

aooao -

domd4j, log4j, neo4jI00000000CO004000 - OO
Feb 26, 2020 - dom4j, log4j, neo4;000000C0 0000043000 OO0 6 000

[0 Neo4;j [0000000COOOO00000OO - OO
mysql00neo4;jtitan (janus)Thugegraph(0000000000
0o0o00ooooog -

Neo4;j 00000000 openCypherd00000000
000000openCypher{INeo4j00000000000000C0CypherI000000000000000cpenCypherN00000000000000
0000oO0000 dod ..

00000Oneo45000 - OO
Neo4j Desktop[INeo4j Browser[I000I00000000000 Neo4j BloomO0O0O00000000Browser(000 OO0
OGraph App{0000Graphxr(0000000

neo4j10000neo4j0000000 - OO
neo4j000000neo4j0000000 neo4;0000COONe04;0000000 LOOD 00O 8 OO0

neo4j vs dgraph vs cayley(][J00000 - 00
Neo4;j J00000000000000000CCCCOO0OO0 DOONeo4j OOOOOOO0OOOODOO000000OO0000000OOOOOD Dgraph
0oootooa -

0000000000000 - 00
NebulaGraph [000000000000000000 shared-nothing (00000000000000NebulaGraph 0000000000000
00000000 Raft 000000 -

neo4;j]0000000000000000000000000
neo4j000000C000000COORDO0COOCD COOODOOCOOODOD 00DooRbooDOoROoOneo4j00000OCDO0COOCDO0CO0
ooo ...

00000neo40000000C0000COO0000OO
00000neo4j0I0000000CCO00000C000 CROOO0OOCOOO0000CO000reo4;0000000C000000

neo4j[jdesktop[jJJcommunity -
Bloom[Ineo4j0000000000C000000OC DODOO000DOObleom 0000000000 OOCCOOO0OCOOCOO0O0DOCOO00OO
aoooa ...

domdj, log4j, neo4j 4j -
Feb 26, 2020 - dom4j, log4j, neo4j000CCC00 OOCCC45000 0OO 6 000

[0 Neo4;j [000000OCOOCO000O00OO - OO
mysql00neo4;jtitan (janus)Thugegraph(O000000000
0o0o00ooooog ..

Neo4j 000000000 epenCypher(00000000
O00000openCypher(INeo4;N00000000000000CYpher0000000000000000penCypherI000000000000000
0000000000 ood -

Unlock the power of Neo4j with our comprehensive Cypher cheat sheet! Discover how to master
queries and enhance your database skills. Learn more now!

Back to Home

https://soc.up.edu.ph

