Master Theorem Cheat Sheet

Master Theorem

Master theorem cheat sheet is an essential tool for computer scientists and
software engineers, especially when dealing with algorithm analysis and
recurrence relations. The Master Theorem provides a straightforward method
for solving recurrences of the form \(T(n) = aT\left(\frac{n}{b}\right) +
f(n) \), which often arises in the analysis of divide-and-conquer algorithms.
In this article, we will delve into the Master Theorem, its applications, and
provide a handy cheat sheet that summarizes the key points and cases.

Understanding Recurrences

Before we dive into the Master Theorem, it is crucial to understand what
recurrences are and why they are important in the analysis of algorithms.

What are Recurrences?

Recurrences are equations that define sequences recursively. In the context
of algorithms, they often describe the running time of recursive functions.
For example, the time complexity of the merge sort algorithm can be expressed
as:

\ [
T(n) = 2T\left(\frac{n}{2}\right) + 0(n)
\1

Here, the problem of size \(n \) is divided into two subproblems of size \(
\frac{n}{2} \), and \(O0(n) \) represents the time taken to merge the sorted
subarrays.

Why Use the Master Theorem?

The Master Theorem simplifies the process of analyzing the time complexity of
divide-and-conquer algorithms. Instead of solving the recurrence through
substitution or the recursion tree method, the Master Theorem provides a set
of conditions that can be checked to find the solution more directly.

The Master Theorem Overview

The Master Theorem provides a way to analyze the running time of algorithms
that fit a specific pattern of recurrences. The general form it applies to
is:

\ [
T(n) = aT\left(\frac{n}{b}\right) + f(n)
\1]

Where:

- \(a \geq 1 \): the number of subproblems,

- \(b>1\): the factor by which the problem size is reduced,

- \(f(n) \): the cost of the work done outside the recursive calls.

Conditions for Application

To apply the Master Theorem, you need to determine the parameters \(a \), \(
b \), and \(f(n) \). The theorem provides three cases based on the
relationship between \(f(n) \) and \(n™{\log b a} \):

1. Case 1: If \(f(n) \) is polynomially smaller than \(n~{\log b a} \)
(specifically, if there exists a constant \(\epsilon > 0 \) such that \(
f(n) = 0(n*{\log b a - \epsilon}) \)), then:

\ [

T(n) = \Theta(n™{\log b a})

\1]

2. Case 2: If \(f(n) \) is asymptotically equal to \(n~{\log b a} \) (i.e.,
\(f(n) = \Theta(n™{\log b a} \log™k n) \) for some \(k \geq 0 \)), then:

\ [

T(n) = \Theta(n™{\log b a} \log”{k+1} n)

\1

3. Case 3: If \(f(n) \) is polynomially larger than \(n~{\log b a} \) and
satisfies the regularity condition (i.e., \(a f\left(\frac{n}{b}\right) \leq
c f(n) \) for some \(¢ <1 \) and sufficiently large \(n \)), then:

\ [

T(n) = \Theta(f(n))

\]

Master Theorem Cheat Sheet

Here is a concise cheat sheet that summarizes the important aspects of the
Master Theorem:

Step-by-Step Application

1. Identify the recurrence:
- Ensure it is in the form \(T(n) = aT\left(\frac{n}{b}\right) + f(n) \).

2. Determine \(a \), \(b \), and \(f(n) \):
- Find the values of \(a \), \(b \), and the function \(f(n) \).

3. Calculate \(n™{\log b a} \):
- Compute \(\log b a \) using the change of base formula if necessary.

4. Compare \(f(n) \) with \(n™{\log b a} \):

- Check which case of the Master Theorem applies:
- Case 1: \(f(n) \) is polynomially smaller.

- Case 2: \(f(n) \) is asymptotically equal.

- Case 3: \(f(n) \) is polynomially larger.

5. Apply the appropriate case:
- Use the results from the applicable case to determine \(T(n) \).

Key Formulas

- For Case 1:

\ [

T(n) = \Theta(n™{\log b a})

\1

- For Case 2:

\ [

T(n) = \Theta(n™{\log b a} \log™{k+1} n)
\1

- For Case 3:

\ [

T(n) = \Theta(f(n))
\1

Common Examples

Here are a few common examples of recurrences and their solutions using the
Master Theorem:

1. Merge Sort:

\ [

T(n) = 2T\left(\frac{n}{2}\right) + 0(n) \quad \Rightarrow \quad T(n) =
\Theta(n \log n)

\1

2. Binary Search:

\ [

T(n) = T\left(\frac{n}{2}\right) + 0(1) \quad \Rightarrow \quad T(n) =
\Theta(\log n)

\1

3. Strassen’s Algorithm for Matrix Multiplication:

\ [

T(n) = 7T\left(\frac{n}{2}\right) + 0(n™2) \quad \Rightarrow \quad T(n) =
\Theta(n™{\log 2 7}) \approx \Theta(n™{2.81})

\1]

Limitations of the Master Theorem

While the Master Theorem is a powerful tool, it has its limitations:

- Non-Polynomial \(f(n) \): It cannot be applied if \(f(n) \) does not fit
the polynomial growth criteria.

- Irregular Recurrences: If the recurrence does not follow the form \(T(n) =
aT\left(\frac{n}{b}\right) + f(n) \), the Master Theorem cannot be applied.

- Complex Functions: Some functions may require a more nuanced approach, such
as the recursion tree method or the substitution method.

Conclusion

In conclusion, the master theorem cheat sheet is an invaluable resource for
anyone involved in algorithm analysis. By understanding the structure of
recurrences and how to apply the Master Theorem, you can efficiently
determine the time complexity of many algorithms. Keep this cheat sheet handy
for quick reference as you tackle various algorithmic challenges in your work
or studies. With practice, applying the Master Theorem will become a quick
and intuitive process, enhancing your algorithm analysis skills
significantly.

Frequently Asked Questions

What is the Master Theorem and why is it important
in algorithm analysis?

The Master Theorem provides a method for analyzing the time complexity of
divide-and-conquer algorithms. It simplifies the process of solving
recurrence relations by providing a set of cases that can quickly determine
the asymptotic behavior of the recurrence without needing to solve it
explicitly.

What are the main cases of the Master Theorem?

The Master Theorem has three primary cases: Case 1 applies when the function
grows polynomially smaller than the dividing factor; Case 2 applies when the
function grows at the same rate as the dividing factor; and Case 3 applies
when the function grows polynomially larger than the dividing factor. Each
case provides a different formula for determining the time complexity.

Can the Master Theorem be applied to all types of
recurrences?

No, the Master Theorem applies specifically to a subset of recurrences that
fit the form T(n) = aT(n/b) + f(n), where a =1 and b > 1. If the recurrence
does not fit this form or if f(n) does not satisfy the regularity conditions,
other methods such as the recursion tree method or substitution method may be
needed.

What common mistakes should be avoided when using
the Master Theorem?

Common mistakes include misidentifying the function f(n), incorrectly
applying the cases, and failing to check the regularity conditions necessary
for the theorem's application. It's also essential to ensure that the
parameters a and b are properly defined and that the function f(n) matches
the required growth rates.

Where can I find a reliable Master Theorem cheat
sheet?

Reliable Master Theorem cheat sheets can be found in algorithm textbooks,
online educational platforms, and coding websites like GeeksforGeeks or
educational blogs. Additionally, many universities provide lecture notes and
resources that summarize the theorem and its applications.

Find other PDF article:
https://soc.up.edu.ph/04-ink/Book?ID=MkV09-7206&title=acu-inventor-practice-exam-2.pdf

https://soc.up.edu.ph/04-ink/Book?ID=MkV09-7206&title=acu-inventor-practice-exam-2.pdf

Master Theorem Cheat Sheet

0000000D000000000000undergraduate(](] ...
1.00 bachelor{JJ00 undergraduate[J[JJ master(JJ] postgraduate 2.undergraduateJJ000000000 01000

UobOoobttoobbooobbboobboaa ..

00000000MSe, MphilJMasterj0000_0000
MasterJ000000000000000Accountancy[JMPhilIMasterJIIMasterI000000000000MS 0000000000000
0000000000000000 -

Oo0000000000000_0000
000000000C0000000 1000000BAOO0Bachelor degree[JO000 010000000B.E.O00Bachelor Degree of
Engineering 020000000B.S.00 ...

postgraduate [] master 000000 - 0O

00000000000000master degreeJ000000000000C00diploma0000000000000000000C0000000000
2[]Master diploma[] Master ...

postgraduatediplomaimaster{ |11 - 0000
Dec 24, 2024 - postgraduatediploma[imaster[JJ00000000Postgraduate Diploma[]Master's Degree[J0]0

O00000000Postgraduate Diploma00000000 ...

0000000000 hdO0000000000 - 00
000000COOOO00 OO0OfCCRROOOOOO00000 00 0o LRDODOOOOO0000O000 boooddddoodddfotoD dooooodoo

[00000000OMX Master3s (00
Mar 7, 2023 - IMX Master 3[]000000000003SO00000CO0 O00OCDOODOODOROOROODOODOO0OR0O00

0000000C0000OVISAD? - 00

0050600000000 CO0R0000VISADIDOODD” LOOODO0COO00O0D Visall J00000O0C0O000OC0O00C DOotoooog
OO0OVISA ..

yuooooooon - todd
0000 2024-11-20 - 00000000000000000

uoo0o0_0oad
May 18, 2024 - [00000OCOCOCOOOOORttps://www.baidu.com/0000000000000000000000000000OC ..

0000000000000000000undergraduate(]] ...
1.00 bachelor{IJ00 undergraduateJ]] master(JJ0] postgraduate 2.undergraduate[JJ000000000 01000

UudoooooooobbbbbbbbbbooOOOOdOOoooooooobbbbbRbEOO O OO OOOOdUOCOooOOooLEoo0ooOOOAMY

00000000MSc, MphilMaster(J0000_0000
Master[[I00000000000000Accountancy[IMPhilIMaster{I[IMasterd000000000000MS c00000000000000
0000000000000000 Master(O0O0OMScOMAOMEngIMArch[00

000000000000000_0000
O0000000000000000 1000000BADOOBachelor degree[J0I000 010000000B.E.OO0Bachelor Degree of

https://soc.up.edu.ph/39-point/files?dataid=tvo96-7841&title=master-theorem-cheat-sheet.pdf

Engineering J2[0000000B.S.0J00Bachelor Degree of Science [13J0J00B.A.[JJ0Bachelor Degree of Art
(40000000BEdOBachelor of Education [J500000000BBA ...

postgraduate [] master 00000 - OO
0000000D0O000DOmaster degree00000000000CO00diploma00000000C0000C00000000CO000CO0O
2[Master diploma[] Master[JJ00000C0000000000000000

postgraduatediploma[Jmaster -
Dec 24, 2024 - postgraduatediploma[Jmaster[J00000000Postgraduate Diploma[]Master's Degree[]

J00000000Postgraduate Diploma[iJ0000000Master's DegreeJJ0000000C000

000000000CphdO0000000C00 - 00
00000CCOOOOOC0 OOffOCROOOOOOO00000 00 0o fhOoobooodddddooddiD boddddooddffttiooo doddofttCo
000000 D000ooooddooooooooobibbbOdddddooooo00aaa -

000000000OMX Master3s ([0
Mar 7, 2023 - QMX Master 3[000000000003SO000CCOO0 0OOOOOCCCCOOOOOOO000000000CCC0O

0000000C0000OVISAQD? - 00
0050600000000 00000000VISADOOOO0O™ 0000CO000000000 Visal OO000000CO000000C0000 000000000
O00VISAQOOOOO 000000 LODO00O0CO00000CCO0000

0000000000 - 0000
0000 2024-11-20 - 000000000000C0000

000000_00d0
May 18, 2024 - [0000000000000C0OCRtEps://www.baidu.com/I00000000000000000C0OCO000000CO -

Unlock the secrets of algorithm analysis with our comprehensive master theorem cheat sheet.
Simplify your studies and enhance your understanding. Learn more!

Back to Home

https://soc.up.edu.ph

