Master Theorem In Analysis Of Algorithm

Master Theorem: Example 3

*  Let T(n)= 2 T(n/2) + 3/4n + 1. What are the parameters?

a= 3
b= 2
d= 1

Therefore, which condition applies?

3= 2% case 3 applies

*  We conclude that
'-nlrll:.l.lb i (—}:”""'F-I. a ) = l_){”hl;..',-_,d:l

= Mote that log,3=1.584..., can we say that T(n) € © (n'5)

Mo, because log,3=1.5849... and n'584 & € (n15849)
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Master theorem is a powerful tool in the analysis of algorithms, particularly
useful for solving recurrence relations that arise in the analysis of divide-
and-conquer algorithms. It provides a systematic way to analyze the time
complexity of algorithms by categorizing recurrences into specific forms and
providing direct solutions. Understanding the master theorem can
significantly simplify the process of determining the running time of
recursive algorithms and can facilitate the design of efficient algorithms.
In this article, we will explore the master theorem in detail, including its
formulation, application, and examples.

Understanding Recurrences

Before delving into the master theorem, it's essential to understand what
recurrences are and why they are crucial in algorithm analysis.

What are Recurrences?

Recurrences are equations that define sequences recursively. In the context
of algorithms, they often arise when an algorithm divides a problem into
smaller subproblems, solves each subproblem recursively, and then combines
the results. The standard form of a recurrence relation for a divide-and-
conquer algorithm can be expressed as:

\[ T(n) = aT\left (\frac{n}{b}\right) + f(n) \]

Where:
- \( T(n) \) is the time complexity of the algorithm for input size \( n \).



- \( a \) is the number of subproblems.
- \( b \) is the factor by which the problem size is reduced.
- \( £(n) \) is the cost of the work done outside the recursive calls.

Importance of Recurrences

Recurrences play a vital role in analyzing the efficiency of algorithms as
they help in:

— Understanding the time complexity of recursive algorithms.

— Comparing different algorithms based on their performance.

— Determining the best, worst, and average case scenarios for algorithm
efficiency.

Introduction to the Master Theorem

The master theorem provides a way to analyze the time complexity of
algorithms that fit the form of the recurrence relation mentioned above. It
helps to establish bounds for \( T(n) \) based on the function \( f(n) \) and
its relation to \( n*{\log_b a} \).

The General Form of the Master Theorem

The master theorem states that for a recurrence of the form:
N[ T(n) = aT\left (\frac{n}{b}\right) + f(n) \]

where \( a \geg 1 \) and \( b > 1 \):

- If \( £f(n) \) is polynomially smaller than \( n*{\log_b a} \),
specifically, i1f there exists a constant \( \epsilon > 0 \) such that \( f(n)
= 0(n™{\log_b a - \epsilon}) \), then:

\[ T(n) = \Theta(n"{\log_b a}) \]

- If \( £f(n) \) is asymptotically equal to \( n*{\log_b a} \), that is, \(

f(n) = \Theta(n*{\log_b a}) \), then:
\[ T(n) = \Theta(n™{\log_b a} \log n) \]
- If \( f(n) \) is polynomially larger than \( n*{\log_b a} \), specifically,

(
f(n) = \Omega (n*"{\log_b a + \epsilon}) \) for some constant \( \epsilon

if \(

> 0 \) and \( a f\left (\frac{n}{b}\right) \leq ¢ f(n) \) for some constant \ (
c < 1 \) and sufficiently large \( n \), then:

\[ T(n) = \Theta(f(n)) \]

Applications of the Master Theorem

The master theorem can be applied to a variety of algorithms, particularly
those that employ a divide—-and-conquer strategy. Here are some common
applications:



1. Merge Sort

Merge sort is a classic example of an algorithm that can be analyzed using
the master theorem. The recurrence relation for merge sort can be expressed
as:

N[ T(n) = 2T\left (\frac{n}{2}\right) + O(n) \]

In this case:

- \N(a=2)\)
- \(b=2))
- \N( £(n) = O0(n) \)

Calculating \( n*{\log_b a} \):
- \( \log_2 2 =1 \)
— Thus, \( n™{\log_b a} = n"1 = n \)

Since \( £(n) = O(n) \) is polynomially equal to \( n*{\log_b a} \), we use
the second case of the master theorem:

\[ T(n) = \Theta(n \log n) \]

2. Binary Search

Binary search is another example that fits the master theorem. The recurrence
relation for binary search is:

\[ T(n) = T\left (\frac{n}{2}\right) + 0(1) \]
Here:

- \( a 1 \)

- \(b=2)\)

- \( £(n) = 0(1) \)

Calculating \( n*{\log_b a} \):
- \( \log_2 1 =0 \)
- Thus, \( n*{\log_b a} = n"0 = 1 \)

Since \( f(n) = 0(1) \) is polynomially smaller than \( n*{\log_b a} \), we
apply the first case of the master theorem:

\[ T(n) = \Theta(n”0) = \Theta (1) \]

3. Strassen’s Algorithm

Strassen’s algorithm for matrix multiplication can also be analyzed using the
master theorem. The recurrence relation for Strassen’s algorithm is:

\[ T(n) = 7T\left (\frac{n}{2}\right) + O(n"2) \]

In this case:

- \N(a=17)\)
- \(b=2)\)
- \( £(n) = 0(n"2) \)



Calculating \( n*{\log_b a} \):
- \( \log_2 7 \approx 2.81 \)
- Thus, \( n™{\log_b a} = n"{2.81} \)

Since \( £f(n) = O0(n”2) \) is polynomially smaller than \( n*{\log_b a} \), we
apply the first case of the master theorem:

\[ T(n) = \Theta(n”{\log_2 7}) \]

Limitations of the Master Theorem

While the master theorem is a powerful tool, it does have limitations:

— Specific Forms: The master theorem is applicable only to recurrences of a

specific form. Not all recurrences can be analyzed using it.

— Non-standard Functions: If \( f£(n) \) does not fit the conditions laid out
in the master theorem, alternative methods such as the recursion tree method
or the substitution method may be needed.

— Complexity Classes: The master theorem cannot determine the exact running

time if the function \( f(n) \) behaves irregularly.

Conclusion

The master theorem is an invaluable asset in the analysis of algorithms,
providing a straightforward approach to solving recurrences commonly found in
divide—-and-conquer algorithms. By understanding its applications and
limitations, algorithm designers and analysts can effectively evaluate the
efficiency of their algorithms. Mastering this theorem not only aids in
algorithm analysis but also enhances the understanding of how different
algorithms behave under various input sizes and conditions. With its
systematic approach, the master theorem remains a fundamental concept in
computer science education and research.

Frequently Asked Questions

What is the Master Theorem in the context of
algorithm analysis?

The Master Theorem provides a method for analyzing the time complexity of
divide—-and-conquer algorithms by giving asymptotic bounds for recurrences of
the form T(n) = aT(n/b) + £(n), where a > 1 and b > 1.

When can I apply the Master Theorem to a recurrence
relation?

You can apply the Master Theorem when your recurrence fits the standard form
T(n) = aT(n/b) + f(n), and when certain regularity conditions on f (n) and the
polynomial growth of aT(n/b) are satisfied.



What are the three cases of the Master Theorem?

The three cases of the Master Theorem are: Case 1, when f(n) is polynomially
smaller than n”(log_b(a)); Case 2, when f(n) is asymptotically equal to
n”(log_b(a)); and Case 3, when f(n) is polynomially larger than n” (log_b(a))
and satisfies regularity conditions.

How does the Master Theorem help in designing
algorithms?

The Master Theorem helps in designing algorithms by allowing developers to
quickly determine the time complexity of recursive algorithms without needing
to derive complex solutions, thus aiding in the assessment of performance and
efficiency.

What are some limitations of the Master Theorem?

Some limitations of the Master Theorem include its applicability only to
specific forms of recurrences, the need for certain regularity conditions,
and its inability to handle non-polynomial functions or recurrences that do
not fit its standard form.
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