Master Theorem In Analysis Of Algorithm

Master Theorem: Example 3

* Let T(n)= 2 T(n/2) + 3/4n + 1. What are the parameters?

a= 3
b= 2
d= 1

Therefore, which condition applies?

3= 2% case 3 applies

* We conclude that
'-nlrll:.l.lb i (—}:”""'F-I. a) = l_){”hl;..',-_,d:l

= Mote that log,3=1.584..., can we say that T(n) € © (n'5)

Mo, because log,3=1.5849... and n'584 & € (n15849)

C5CE 2335, Fall 2008 Master Thearem %

Master theorem is a powerful tool in the analysis of algorithms, particularly
useful for solving recurrence relations that arise in the analysis of divide-
and-conquer algorithms. It provides a systematic way to analyze the time
complexity of algorithms by categorizing recurrences into specific forms and
providing direct solutions. Understanding the master theorem can
significantly simplify the process of determining the running time of
recursive algorithms and can facilitate the design of efficient algorithms.
In this article, we will explore the master theorem in detail, including its
formulation, application, and examples.

Understanding Recurrences

Before delving into the master theorem, it's essential to understand what
recurrences are and why they are crucial in algorithm analysis.

What are Recurrences?

Recurrences are equations that define sequences recursively. In the context
of algorithms, they often arise when an algorithm divides a problem into
smaller subproblems, solves each subproblem recursively, and then combines
the results. The standard form of a recurrence relation for a divide-and-
conquer algorithm can be expressed as:

\[T(n) = aT\left (\frac{n}{b}\right) + f(n) \]

Where:
- \(T(n) \) is the time complexity of the algorithm for input size \(n \).

- \(a \) is the number of subproblems.
- \(b \) is the factor by which the problem size is reduced.
- \(£(n) \) is the cost of the work done outside the recursive calls.

Importance of Recurrences

Recurrences play a vital role in analyzing the efficiency of algorithms as
they help in:

— Understanding the time complexity of recursive algorithms.

— Comparing different algorithms based on their performance.

— Determining the best, worst, and average case scenarios for algorithm
efficiency.

Introduction to the Master Theorem

The master theorem provides a way to analyze the time complexity of
algorithms that fit the form of the recurrence relation mentioned above. It
helps to establish bounds for \(T(n) \) based on the function \(f(n) \) and
its relation to \(n*{\log_b a} \).

The General Form of the Master Theorem

The master theorem states that for a recurrence of the form:
N[T(n) = aT\left (\frac{n}{b}\right) + f(n) \]

where \(a \geg 1 \) and \(b > 1 \):

- If \(£f(n) \) is polynomially smaller than \(n*{\log_b a} \),
specifically, i1f there exists a constant \(\epsilon > 0 \) such that \(f(n)
= 0(n™{\log_b a - \epsilon}) \), then:

\[T(n) = \Theta(n"{\log_b a}) \]

- If \(£f(n) \) is asymptotically equal to \(n*{\log_b a} \), that is, \(

f(n) = \Theta(n*{\log_b a}) \), then:
\[T(n) = \Theta(n™{\log_b a} \log n) \]
- If \(f(n) \) is polynomially larger than \(n*{\log_b a} \), specifically,

(
f(n) = \Omega (n*"{\log_b a + \epsilon}) \) for some constant \(\epsilon

if \(

> 0 \) and \(a f\left (\frac{n}{b}\right) \leq ¢ f(n) \) for some constant \ (
c < 1 \) and sufficiently large \(n \), then:

\[T(n) = \Theta(f(n)) \]

Applications of the Master Theorem

The master theorem can be applied to a variety of algorithms, particularly
those that employ a divide—-and-conquer strategy. Here are some common
applications:

1. Merge Sort

Merge sort is a classic example of an algorithm that can be analyzed using
the master theorem. The recurrence relation for merge sort can be expressed
as:

N[T(n) = 2T\left (\frac{n}{2}\right) + O(n) \]

In this case:

- \N(a=2)\)
- \(b=2))
- \N(£(n) = O0(n) \)

Calculating \(n*{\log_b a} \):
- \(\log_2 2 =1 \)
— Thus, \(n™{\log_b a} = n"1 = n \)

Since \(£(n) = O(n) \) is polynomially equal to \(n*{\log_b a} \), we use
the second case of the master theorem:

\[T(n) = \Theta(n \log n) \]

2. Binary Search

Binary search is another example that fits the master theorem. The recurrence
relation for binary search is:

\[T(n) = T\left (\frac{n}{2}\right) + 0(1) \]
Here:

- \(a 1 \)

- \(b=2)\)

- \(£(n) = 0(1) \)

Calculating \(n*{\log_b a} \):
- \(\log_2 1 =0 \)
- Thus, \(n*{\log_b a} = n"0 = 1 \)

Since \(f(n) = 0(1) \) is polynomially smaller than \(n*{\log_b a} \), we
apply the first case of the master theorem:

\[T(n) = \Theta(n”0) = \Theta (1) \]

3. Strassen’s Algorithm

Strassen’s algorithm for matrix multiplication can also be analyzed using the
master theorem. The recurrence relation for Strassen’s algorithm is:

\[T(n) = 7T\left (\frac{n}{2}\right) + O(n"2) \]

In this case:

- \N(a=17)\)
- \(b=2)\)
- \(£(n) = 0(n"2) \)

Calculating \(n*{\log_b a} \):
- \(\log_2 7 \approx 2.81 \)
- Thus, \(n™{\log_b a} = n"{2.81} \)

Since \(£f(n) = O0(n”2) \) is polynomially smaller than \(n*{\log_b a} \), we
apply the first case of the master theorem:

\[T(n) = \Theta(n”{\log_2 7}) \]

Limitations of the Master Theorem

While the master theorem is a powerful tool, it does have limitations:

— Specific Forms: The master theorem is applicable only to recurrences of a

specific form. Not all recurrences can be analyzed using it.

— Non-standard Functions: If \(f£(n) \) does not fit the conditions laid out
in the master theorem, alternative methods such as the recursion tree method
or the substitution method may be needed.

— Complexity Classes: The master theorem cannot determine the exact running

time if the function \(f(n) \) behaves irregularly.

Conclusion

The master theorem is an invaluable asset in the analysis of algorithms,
providing a straightforward approach to solving recurrences commonly found in
divide—-and-conquer algorithms. By understanding its applications and
limitations, algorithm designers and analysts can effectively evaluate the
efficiency of their algorithms. Mastering this theorem not only aids in
algorithm analysis but also enhances the understanding of how different
algorithms behave under various input sizes and conditions. With its
systematic approach, the master theorem remains a fundamental concept in
computer science education and research.

Frequently Asked Questions

What is the Master Theorem in the context of
algorithm analysis?

The Master Theorem provides a method for analyzing the time complexity of
divide—-and-conquer algorithms by giving asymptotic bounds for recurrences of
the form T(n) = aT(n/b) + £(n), where a > 1 and b > 1.

When can I apply the Master Theorem to a recurrence
relation?

You can apply the Master Theorem when your recurrence fits the standard form
T(n) = aT(n/b) + f(n), and when certain regularity conditions on f (n) and the
polynomial growth of aT(n/b) are satisfied.

What are the three cases of the Master Theorem?

The three cases of the Master Theorem are: Case 1, when f(n) is polynomially
smaller than n”(log_b(a)); Case 2, when f(n) is asymptotically equal to
n”(log_b(a)); and Case 3, when f(n) is polynomially larger than n” (log_b(a))
and satisfies regularity conditions.

How does the Master Theorem help in designing
algorithms?

The Master Theorem helps in designing algorithms by allowing developers to
quickly determine the time complexity of recursive algorithms without needing
to derive complex solutions, thus aiding in the assessment of performance and
efficiency.

What are some limitations of the Master Theorem?

Some limitations of the Master Theorem include its applicability only to
specific forms of recurrences, the need for certain regularity conditions,
and its inability to handle non-polynomial functions or recurrences that do
not fit its standard form.

Find other PDF article:
https://soc.up.edu.ph/11-plot/Book?dataid=POc42-4869&title=catfish-mathan-and-leah.pdf

Master Theorem In Analysis Of Algorithm

O000000000000C0000C00undergraduate 000 ...
1.00 bachelor{JJ0 undergraduateJ]] master{JJ0] postgraduate 2.undergraduateJJ000000000 ...

00000000MSc, MphilMaster(0000_0000
Master(JJ00000000000000AccountancyJMPhil[JMaster{]1MasterJ00000000000 ...

000000000000000_000d
00000000000000000 1000000BAQOOCBachelor degree[J0000 010000000B.E.O00Bachelor ...

postgraduate [] master 000000 - 00
00000000000000master degree[0000000CCC00000diploma00000000000000 ...

postgraduatediplomaJmaster(]0000 - 0000
Dec 24, 2024 - postgraduatediploma[imaster(00000000Postgraduate Diploma[]Master's Degree[J[]

og ...

00000CCCOO0000000000undergraduate(] ...
1.00 bachelor{IJ00 undergraduate[J]] master(JJ00 postgraduate 2.undergraduate[JJ000000000 01000

00000000MS e, MphiliMaster(0000_0000

https://soc.up.edu.ph/11-plot/Book?dataid=POc42-4869&title=catfish-mathan-and-leah.pdf
https://soc.up.edu.ph/39-point/Book?ID=xeT29-1294&title=master-theorem-in-analysis-of-algorithm.pdf

Master(000000000000000Accountancy[JMPhil[[Master(JIIMasterJ000000000000M ScO0000000000000
00000000O0000000 Master0O000OMScOMAMEngIMArch{0000

U00000000000000 D000

00000000000000000 100000CBAQOOBachelor degree(0000 01000CCCOCB.E.OO00Bachelor Degree of
Engineering [J20000000B.S.000Bachelor Degree of Science [3[J0J0B.A.(0Bachelor Degree of Art
(4A0000000BEd{OBachelor of Education [J500000000BBA ...

postgraduate [] master []00000 - 00
0000000000000Omaster degree[000000000000000diplomal000000000C0000000CCO00000C00O00
2[Master diploma[] Master(J10000000000C000000CCOO0

postgraduatediplomaimaster{][] - 0000
Dec 24, 2024 - postgraduatediploma[imaster(J00000000Postgraduate Diploma[]Master's Degree[J][]

000000000Postgraduate Diploma[JJ00000000Master's Degree[JJ00000000000

0000000000phdO0000000000 - 00
(00000000000 CoDhoOoddRobDoooOdotDo o 0o hootdithododiftbooo oododiftboodtdioot foooooddtt
000000 00fRDOddioooDooodtbotoiootioooitooooend -

0000000000MX Master3s (00

Mar 7, 2023 - OMX Master 300000000003 SO00000000 00000000000O0CCCOOOO00000000000
0000000000000VISAO? - 00
Q050600000000 "0O000R0OVISAOODONOO” Oo0ORO00D000OOnO Visall 0000ONOODOOOOODOC0OD doonooooa

O00VISAQOOOOO 000000 DODO00OOCO00000CC00000

Q000000000 - oo
0000 2024-11-20 - 0000COO0000COO000

(00000_0oo0
May 18, 2024 - 0000000000000000Rttps://www.baidu.com/J0000000000000C0000000C00000000 -

Unlock the power of the master theorem in analysis of algorithms! Discover how to simplify complex
recurrences and enhance your algorithm skills. Learn more!

Back to Home

https://soc.up.edu.ph

