Java 8 Programs For Practice

Java 8 programs for practice are essential for both beginners and experienced
developers looking to sharpen their skills in this widely-used programming
language. With the introduction of Java 8, numerous features were added that
significantly changed how developers approach coding. These features include
lambda expressions, the Stream API, and new date/time APIs, which enhance the
functional programming capabilities of Java. In this article, we will explore
various Java 8 programs that you can practice to solidify your understanding
and application of these features.

Understanding Java 8 Features

Before diving into specific programs, it's crucial to understand the key
features introduced in Java 8:

1. Lambda Expressions

Lambda expressions allow you to implement functional interfaces in a concise
way. They enable you to write more readable and maintainable code.

Example:

A simple lambda expression can be used to create a thread:
““java

Runnable r = () -> System.out.println("Hello from a thread!");

new Thread(r).start();



2. Stream API

The Stream API provides a high-level abstraction for processing sequences of
elements (like collections) in a functional style. This can lead to cleaner
and more efficient code.

Example:
Filtering a list of integers:

““java
List numbers = Arrays.asList(1l, 2, 3, 4, 5);
numbers.stream()

.filter(n ->n % 2 == 0)
.forEach(System.out::println);

3. New Date and Time API

Java 8 introduced a new date and time API, which is more intuitive and
comprehensive than the previous " java.util.Date® and "java.util.Calendar'.

Example:
Getting the current date:
" java
LocalDate today = LocalDate.now();
System.out.println("Today's date: " + today);

Java 8 Programs for Practice

Here are some Java 8 programs that you can practice to enhance your
understanding of the new features.

1. Implement a Simple Calculator Using Lambda
Expressions

Create a simple calculator that can perform addition, subtraction,
multiplication, and division using lambda expressions.

" java
interface Calculator {
double operation(double a, double b);

}

public class CalculatorDemo {



public static void main(String[] args) {
Calculator addition = (a, b)
Calculator subtraction = (a,
Calculator multiplication =
Calculator division = (a, b)

->a + b;

->a - b;
b) -> a b;

->a / b;

System.out.println("Addition: + addition.operation(10, 5));
System.out.println("Subtraction: " + subtraction.operation(10, 5));
System.out.println("Multiplication: " + multiplication.operation(10, 5));
System.out.println("Division: " + division.operation(10, 5));

}

AN

2. Stream API: Filter and Sort a List of Employees

Suppose you have a list of employees with their names and salaries. Write a
program to filter employees with a salary greater than a certain amount and

sort them by name.

"“java
import java.util.;

import java.util.stream.;

class Employee {
String name;
double salary;

Employee(String name, double salary) {
this.name = name;
this.salary = salary;

}

public
return

}

public
return
}
}

public class EmployeeFilter {

String getName() {
name;

double getSalary() {
salary;

public static void main(String[] args) {

List employees = Arrays.asList(

new Employee("John", 60000),

new Employee(" )
new Employee("Jack", 50000),
new Employee(' )

'Jane", 80000

’

‘Jitl", 70000



);

double threshold = 55000;

List filteredEmployees = employees.stream()
.filter(e -> e.getSalary() > threshold)
.sorted(Comparator.comparing(Employee: :getName))
.collect(Collectors.tolList());

filteredEmployees.forEach(e -> System.out.println(e.getName() + ": " +
e.getSalary()));

}

}

3. New Date and Time API: Calculate Days Between Two
Dates

Write a program that calculates the number of days between two dates using
the new Date and Time API.

““java
import java.time.lLocalDate;
import java.time.temporal.ChronoUnit;

public class DaysBetweenDates {

public static void main(String[] args) {
LocalDate startDate = LocalDate.of (2023, 1, 1);
LocalDate endDate = LocalDate.of (2023, 12, 31);

long daysBetween = ChronoUnit.DAYS.between(startDate, endDate);
System.out.println("Days between: " + daysBetween);

}

}

4. Creating a List of Squares Using Stream API

Create a program that generates a list of squares of numbers from 1 to 10
using the Stream API.

““java
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

public class SquarelList {
public static void main(String[] args) {



List squares = IntStream.rangeClosed(1l, 10)
.map(x -> x Xx)

.boxed()

.collect(Collectors.toList());

System.out.println("Squares: " + squares);
}
}

5. Grouping Employees by Salary Using Stream API

Write a program that groups employees based on their salary ranges using the
Stream API.

““java
import java.util.;
import java.util.stream.Collectors;

public class EmployeeGrouping {

public static void main(String[] args) {
List employees = Arrays.aslList(

new Employee("John", 60000),

new Employee("Jane", 80000),

new Employee("Jack", 50000),

new Employee("Jill", 70000),

new Employee("Joe", 60000)

);

Map groupedEmployees = employees.stream()
.collect(Collectors.groupingBy(e -> {

if (e.getSalary() < 60000) return "Low";

else if (e.getSalary() < 80000) return "Medium";
else return "High";

1))

groupedEmployees. forEach((k, v) -> {

System.out.println(k + ": " +

v.stream().map(Employee: :getName).collect(Collectors.joining(", ")));
});

}

}

Conclusion

Practicing Java 8 programs for practice is an effective way to familiarize



yourself with the new features of Java 8. By working through various
programs, you can apply concepts such as lambda expressions, the Stream API,
and the new Date and Time API in real-world scenarios.

As you explore these examples, you will gain a deeper understanding of
functional programming principles, which can lead to more efficient and
effective coding practices. Keep experimenting with different problems and
solutions to further enhance your Java skills. Happy coding!

Frequently Asked Questions

What are some basic Java 8 features I should
practice with?

You should practice with lambda expressions, streams, optional, and the new
Date and Time API.

How can I create a simple lambda expression in Java
87?

You can create a lambda expression by using the syntax (parameters) ->
expression. For example, (a, b) -> a + b is a simple lambda that adds two
numbers.

What is a stream in Java 8 and how can I use 1t?

A stream is a sequence of elements that can be processed in a functional
style. You can use streams to filter, map, and reduce data by calling methods
like filter(), map(), and reduce() on a collection.

Can you give an example of using Optional in Java 8?

Sure! You can use Optional to avoid null checks. For example:
Optional<String> name = Optional.ofNullable(getName()); name.ifPresent(n ->
System.out.println(n));

What is the new Date and Time API in Java 8?

The new Date and Time API is part of the java.time package, which provides a
more comprehensive and user-friendly way to work with dates and times than
the old java.util.Date.

How do I filter a list using streams in Java 8?

You can filter a list by calling the stream() method followed by filter().
For example: list.stream().filter(x -> x > 10).collect(Collectors.toList());



What are method references in Java 87?

Method references are a shorthand notation of a lambda expression to call a
method. For example, instead of writing (s) -> System.out.println(s), you can
use System.out::println.

How can I sort a list using streams in Java 8?

You can sort a list using the sorted() method of streams. For example:
list.stream().sorted().collect(Collectors.tolList());

What are default methods in interfaces introduced 1in
Java 87

Default methods allow you to add new methods to interfaces without breaking
existing implementations. You define them using the 'default' keyword.

How can I parallelize operations using streams in
Java 87

You can parallelize operations by calling the parallelStream() method on a
collection. For example: list.parallelStream().filter(x -> x >
10).collect(Collectors.toList());

Find other PDF article:
https://soc.up.edu.ph/02-word/Book?dataid=BUn64-7100&title=42-inch-husgvarna-42-mower-deck-b
elt-diagram.pdf

Java 8 Programs For Practice

00 Java 00000 - 00
00000 JavadoOOOOOCCCOOOO0O0000000000CC00

00002025 Javad0d0 - 00
Jan 6, 2025 - Java[UUITODOO00OOCOO0COODOO0COODDO0COO0DO0DDjavaooood -

J[ava -CSDN
Dec 30, 2024 - JJ0MavalJ0000000000avadd00000202 300000000 avaJ000000000 -

Java LTSOO0000 - 00
Java LTS[[] (I0000DO0000000OCOO0O00O00OROOCO00000000ORO000000000 -

Java[J[J-CSDNOO0
CSDNJava[][l,Java[l, J00000000000000000



https://soc.up.edu.ph/02-word/Book?dataid=BUn64-7100&title=42-inch-husqvarna-42-mower-deck-belt-diagram.pdf
https://soc.up.edu.ph/02-word/Book?dataid=BUn64-7100&title=42-inch-husqvarna-42-mower-deck-belt-diagram.pdf
https://soc.up.edu.ph/34-flow/files?dataid=Cxu10-7142&title=java-8-programs-for-practice.pdf

00 Java 00000 - 00
00000 Java[OOO0OOCOOODOOCOO0DO0COOD0000n

2025[]Java -
Jan 6, 2025 - Java[JJ0I TOO00000000000000000000000000000000m avad0000003 0% 0000javad0d0o00

Java[[ji00-CSDN[I0
Dec 30, 2024 - J000ava000CCO0000QTavadi000002023000000007avali000000CCmavadoooon Coooo
uuoooooooooog -

Java LTS -
Java LTS (D0000O)00000000000000000000000O00000000D0000DO000D000000OBugON0000000000
[Java LTS[J ...

Java[J[-CSDN{{]
CSDNJava(ll,Java[Jl,j0000000000C0O0000

ava 2024
Java[l00000000 20240000000 00SpringCloudAlibabaJ00000000000RocketMQUNNNDIN000OCCO0000000D
0avaO00000OO... O -

Java[J00000D0OC - 00
1 I00mavaddd0000spring bootIOONNOOO0O0COOOO0OOCOOOOO0CCO0O000C000 2 0001 00000avaEEOODO

dooodood -

A Java Exception has occurred. ...-CSDN
Feb 7, 2010 - 000000000 "a java exception has occurred"[J0000 O00O001.7000jdk0001 6000 dkO0000000

O00idk0000 mdkOO0eclipsedOooO ...

oot JDKOOO00!-CSDN
Jun 2, 2014 - (0000CSDNOOOOO0!!! JDKOOOOO! D000000000000mava SEQOOO0OCOCOCSDNODO

Spring Boot[J[JRedis[]Lettuce
Apr 13, 2019 - J0000CSDNQOO00Spring Boot[JRedis[LettuceJ0000000000CCCCOOO0000000000000
WavaJ00000000CSDNOOO

Enhance your coding skills with our curated list of Java 8 programs for practice. Dive in now and
discover how to master Java efficiently!

Back to Home


https://soc.up.edu.ph

