Grading Students Hackerrank Solution

HackerRank Grading

Students Problem
HackerRank Solution

Grading students Hackerrank solution is a common challenge among new programmers and students
learning to code. This problem not only tests one's understanding of basic programming concepts but also
introduces the idea of implementing algorithms to solve real-world issues. In this article, we will delve into
the problem statement, discuss the approach to solving it, provide a sample solution, and analyze the
solution's efficiency. By the end, readers will have a comprehensive understanding of how to tackle the

Grading Students problem on HackerRank.

Understanding the Problem Statement

In the Grading Students challenge, you are given a list of student grades and a set of rules to round those
grades according to specific conditions. The task is to determine the final grades for each student based on

the following criteria:
1. If the difference between the grade and the next multiple of five is less than 3, round the grade up to
that multiple of five.

2. If the grade is less than 38, it is not rounded because the student will still fail.

The objective is to return a list of the final grades for all students after applying the rounding rules.

Input Format

- The first line contains an integer 'n’, the number of students.

- The following 'n" lines contain integers representing the grades of each student.



Output Format

- Output 'n’ lines, each containing the final grade after rounding.

Example Input and Output

To better illustrate the problem, let's consider an example:

Input:

73
67
38
33

Output:

75
67
40
33

Explanation:
- 73 rounds to 75 (next multiple of 5).
- 67 stays the same.

- 38 rounds to 40.

- 33 remains unchanged as it is below 38.

Approach to Solve the Problem

To solve the Grading Students problem, we can break down the solution into the following steps:

1. Read Input: Gather all grades as input.



2. Loop Through Each Grade: For each grade, determine whether it needs to be rounded.
3. Apply Rounding Rules: Implement the rounding logic based on the provided conditions.
4. Store Results: Store the final grades in a list.

5. Print Output: Output the final grades.

Detailed Steps

1. Input Reading: Read the number of students and their respective grades from standard input.
2. Rounding Logic:

- If the grade is less than 38, it's not rounded.

- Calculate the next multiple of five using the formula: ‘next_multiple_of_five = (grade // 5 + 1) 5".
- Check if the difference between the next multiple of five and the original grade is less than 3.
- If so, round up; otherwise, keep the original grade.

3. Output: Print the final grades.

Sample Python Implementation

Here is a Python implementation of the Grading Students solution:
“python

def grading_students(grades):
final_grades = []

for grade in grades:

if grade < 38:

final_grades.append(grade)

else:

next_multiple_of_five = (grade // 5 + 1) 5
if next_multiple_of five - grade < 3:
final_grades.append(next_multiple_of_five)
else:

final_grades.append(grade)
return final_grades

if _name__ =="_main__"
n = int(input())

grades =[]

for _ in range(n):

grade = int(input())



grades.append(grade)

result = grading_students(grades)
for grade in result:

print(grade)

Explanation of the Code

- The "grading_students’ function takes a list of grades as input.
- It iterates through each grade and applies the rounding logic described earlier.
- The results are stored in a list called “final_grades’, which is returned at the end of the function.

- The 'if _name__ =="__main__"" block handles the input and output operations.

Efficiency Analysis

The time complexity of the solution is O(n), where n is the number of students. This is because we are
processing each grade exactly once. The space complexity is also O(n) due to the storage of final grades in a
list.

Edge Cases

When dealing with the Grading Students problem, consider the following edge cases:

- Minimum Input Size: What happens when there is only one student? Ensure that the program can
handle this case correctly.

- All Failing Grades: If all grades are below 38, the output should reflect that no grades are rounded.
- All Passing Grades: If all grades are above 38, the rounding logic should be applied uniformly.

Conclusion

The Grading Students problem on HackerRank is an excellent exercise for those looking to improve their
coding skills and understand basic algorithms. By following a structured approach to solve the problem,

programmers can enhance their logical thinking and problem-solving abilities.

In this article, we explored the problem statement, presented a sample solution, and analyzed the efficiency



of the approach. With practice, tackling similar algorithmic challenges will become easier, paving the way

for more complex programming tasks in the future.

Frequently Asked Questions

What is the grading students problem on HackerRank?

The grading students problem involves reading a list of student grades and applying a specific rounding

rule to determine the final grades, ensuring that certain thresholds for rounding up are met.

What are the rules for rounding grades in the grading students
challenge?

Grades are rounded up if they are within 2 points of the next multiple of 5. If the original grade is less than

38, it is not rounded.

How do you handle edge cases in the grading students problem?

Edge cases include grades that are already at a multiple of 5, grades just below a rounding threshold, and

grades below the minimum passing grade.

What programming languages can you use to solve the grading students
problem on HackerRank?

You can use various programming languages such as Python, Java, C++, Ruby, and JavaScript to

implement your solution.

Can you provide a sample input and output for the grading students
problem?

Sample input: [73, 67, 38, 33]. Sample output: [75, 67, 40, 33].

What is a common approach to solving the grading students problem?

A common approach is to iterate through each grade, apply the rounding rules, and store the modified

grades in a new list.

How do you test your solution for the grading students problem?

You can test your solution by using various test cases, including edge cases and large datasets, to ensure it

accurately handles all scenarios.



What are some potential performance issues when solving the grading
students problem?

Performance issues may arise with very large inputs, but the problem is generally efficient since it

requires a linear scan through the grades.

Is there a built-in function in Python to help with rounding in the
grading students problem?

While Python has a built-in round() function, you will need to implement custom logic to ensure the

rounding rules specific to this problem are followed.

What is the importance of understanding the grading students problem
for coding interviews?

Understanding this problem helps demonstrate your ability to implement algorithms, handle edge cases,

and work with arrays, which are common topics in coding interviews.

Find other PDF article:
https://soc.up.edu.ph/39-point/pdf?ID=RuF11-0933&title=mastercraft-compressor-manual.pdf

Grading Students Hackerrank Solution

400GPAINO00000? - OO
0000000000400GPANDOO00C000000000000000000C0000C000000000000000g rading scheme[JGPA[MN
000000000O0COODDO0COGPANDDO0DOOD0D 0o00OOCOo0DO0R000000GPALD 000GPAQO ..

(0000000 - ad
0000 (graded algebra)di000d GL_1 000000000000 GL_1 00000000000000000000000000000000at ine
cone(] 0000 GL_1 000000000000000000CCCCOOOterusO0000000CCCCOOOO0O0000000000CE -«

akoya0000000COO0O0OCOOCODO0OCO -
(000000OO0DDO00R0O0 Dottioodtioodiidodiooooo O dodioodoooodo 0 bodtooidibdid tdto O @
OGEM GRADING CENTER[III000GGCH 0 COODO00000OCOODONGL{

grading scale[] -
0000 grading scale[] J0000000C0000000C0"0O00", DOO0000DOCO00grading scale] 000000007 OO00 00O
4 100

[00000grading system(JI00000000000000
000000grading system[O00000000000000 O00diy00200000000000000000000000000000Cgrading
system{J00000000 (00



https://soc.up.edu.ph/39-point/pdf?ID=RuF11-0933&title=mastercraft-compressor-manual.pdf
https://soc.up.edu.ph/25-style/files?ID=Guc27-9629&title=grading-students-hackerrank-solution.pdf

0000000000000001-100000 - 00
Jan 6, 2021 - 00000CCCCOC: 000000000OCCCCOOOOOOOOOoOD000000000080-8500000007-7.50 008-100000
O0000000000000000000000O85090000 DOU0U0Erasmus [J0Dutch Grading System [J[:

0013000000000 - 00

O0001300000000000000O00O4. o0s.ofnittittititbottitbitittotihottinOonOonon 1200 30n00o0nn
OO0000000A+D 1000110000000000ALA-D 7009000000000OBO0T 400600000000 ..

(000000max (4k120£fps hdr vivid)[JO000+00000
Apr 12, 2025 - [[7400000000000000000000C000000CColor grading000000CO0ON00CO0ONOC0O0O0OC00
000000000HDR vividJOODOOOOOO0 CCCOOOOOOOOHDR vivid OOOOOOO

gpa0b00000b-00b0000 - OO
00000000000Grading Scheme[J0000000000C000000000B-0000000BOO00O~

00000000000000000000 - 00
0000000000ooo000ooD oooooooiiRtOdddddddddooddodooooooon ddoooooooobbibdididdoooo0000ac:
{O0DOO000CODOOOOORDhOO0O0RODOOO00OOD dooDodo0oa ..

40GPANO000000? - 00
0000000000400GPANDO000C000000000000000000C00000000000000000000grading scheme[JGPAOMN
doooooog ..

00000000 - oo
0000 (graded algebra)(0000 GL_1 0000000000CC GL_1 000O00000CCO000000C0000000C00000affine
cone[] 0000 GL_ 1 OO ...

akoya
HOO0OOOOOOOOOOOOOOO dodoOOOodododododododoodo ¢ doOodododo0o0 & DodoOoOooo0oo 0Ooo 0 o
[JGEM ...

0000 grading scale[] - (I
0000 grading scale[] JO00000000O0000000"DO00", DOO000000C00Ngrading scale] 000000007 OO00 000
4 000

000000grading systemJ0000000000000C0

O00000grading system{IN00000000000000 DO0diyO02000000000000000000000000000000grading
system{JI00000000 L -

00000CCCOOOOOo01-100000 - OO

Jan 6, 2021 - 0000000000: DO0000CCO00000C0000000CO00000C000000080-8500000007-7.50 008-1 00000
Ooodooooog -

0013000000000 - 0o
0000130000000000R00000004-00s. 00000oRboNDOoDbo0tOoRbo0DooRbo0CooRho0o0o 1200130000000
ooog ...

max (4k120fps hdr vivid) +
Apr 12, 2025 - [J040000000000000000000C0O0O0OOCcolor grading000000000O000OOOOOOO0O00O0000O0O

OO0000DOCHDR ..




gpa0b00000b-00b0000 - OO
00000000000Grading SchemeJ00000000000000000000B-0000000BOO00O~

0000o0ODO00OCOO0000O - 0O
000000O0000OOCOO000 OooootOOoOoootOOoOoootOODOOoootOooo ooooitOoooooitOOoOoootOO0000

Unlock the secrets to mastering the Grading Students HackerRank solution! Discover how to tackle
this challenge effectively. Learn more for expert tips and insights!

Back to Home


https://soc.up.edu.ph

