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First Bad Version LeetCode Solution is a popular problem that many developers
encounter while practicing coding for interviews or improving their
algorithmic skills. The problem revolves around a scenario where you are
tasked with finding the first bad version of a product from a series of
versions. This article will delve into the problem statement, explain the
binary search approach that leads to an efficient solution, and also provide
a detailed analysis of the time and space complexity involved.

Problem Statement

In the First Bad Version problem, you are given a function “bool
isBadVersion(version) which returns "true  if the version is bad and " false"
otherwise. Your goal is to find the first bad version in a sequence of "n°
versions, where versions are numbered from "1° to "n’.

The problem can be summarized as follows:

1. You are given a total of "n° versions.

2. There exists a first bad version, and all subsequent versions are also
bad.

3. You have to determine the first bad version in an optimized manner.

The challenge lies in efficiently narrowing down the range of versions to
find this first bad version, rather than checking each version one by one.

Understanding the Problem



To understand how to approach this problem, let’s clarify a few key points:

Characteristics of the Versions

- Sequential Nature: If version k' is bad, then all versions greater than
"k’ are also bad.

- Existence of a Bad Version: There is guaranteed to be at least one bad
version in the list of versions.

Given this structure, a direct approach (i.e., checking each version
sequentially) would be inefficient, especially for larger values of "'n . The
optimal way to solve this problem is to utilize the properties of binary
search.

Binary Search Approach

Binary search is an efficient algorithm for finding an item from a sorted
list of items. It works by repeatedly dividing the search interval in half.
In this problem, we can leverage the sorted nature of the versions based on
whether they are bad or good.

Steps to Implement Binary Search

1. Initialization: Start with two pointers, “left  initialized to "1  and
‘right’ initialized to 'n’.

2. Loop: While "left  is less than "right :

- Calculate the midpoint: "'mid = left + (right - left) // 2 .

- Use the “isBadVersion(mid) ™ function to check if the version at "mid" is
bad.

- If it is bad, then the first bad version must be at "'mid’ or to the left of
"mid’ . Thus, set "right = mid .

- If it is not bad, then the first bad version must be to the right of "mid".
Thus, set "left = mid + 1.

3. Termination: Once the loop terminates, "left® will point to the first bad
version.

Code Implementation

Here’s how the binary search algorithm can be implemented in Python:

" python
def isBadVersion(version):
This function is predefined and returns True if the version is bad, False



otherwise.
pass

def firstBadVersion(n):

left, right =1, n

while left < right:

mid = left + (right - left) // 2

if isBadVersion(mid):

right = mid the first bad version is mid or to the left
else:

left = mid + 1 the first bad version is to the right
return left left is now pointing to the first bad version

In this code, we define the " firstBadVersion® function which implements the
binary search logic as described. The “isBadVersion  function is assumed to
be predefined and is used to check the status of each version.

Time and Space Complexity Analysis

Understanding the efficiency of the solution is crucial, especially in
competitive programming and real-world applications.

Time Complexity

- The time complexity of this binary search approach is 0(log n). Each
iteration of the while loop effectively halves the search space, leading to
logarithmic time complexity.

Space Complexity

- The space complexity of the algorithm is 0(1l) because we are only using a
constant amount of space for the variables "left’, "right’, and "mid .

Conclusion

The First Bad Version problem is a classic example of how binary search can
be applied to efficiently solve problems that might seem linear at first
glance. By understanding the properties of the problem and leveraging the
binary search algorithm, we can significantly reduce the time complexity from
linear to logarithmic. This not only makes the solution faster but also more
scalable for larger inputs.



Practicing problems like this one is essential for honing your algorithmic
skills and preparing for technical interviews. The key takeaway is to always
look for patterns and properties in the problem that allow you to reduce the
complexity of your solution. With the right approach, even seemingly
difficult problems can be tackled effectively.

Frequently Asked Questions

What is the 'First Bad Version' problem on LeetCode?

The 'First Bad Version' problem is a coding challenge that asks you to find
the first bad version of a software release given a function that can
determine if a version is bad. You need to implement a solution that
efficiently identifies this version using binary search.

What is the optimal time complexity for solving the
'First Bad Version' problem?

The optimal time complexity for solving the 'First Bad Version' problem is
0(log n), where n is the total number of versions. This is achieved by using
a binary search approach.

What is the primary function signature for the
'First Bad Version' solution?

The primary function signature for the solution is typically 'public int
firstBadVersion(int n)', where n represents the total number of versions.

How does the binary search algorithm work in the
context of 'First Bad Version'?

In the binary search algorithm for the 'First Bad Version', you maintain two
pointers, low and high. You check the middle version. If it's bad, it means
the first bad version is either the middle version or to the left; if it's
good, the first bad version must be to the right. You continue narrowing down
until you find the first bad version.

What edge cases should be considered when
implementing the 'First Bad Version' solution?

Edge cases include scenarios where all versions are good, all are bad, or
where there is only one version. You should also handle the case where the
first version is the bad one.

Can you provide a sample code implementation for the



'First Bad Version' problem?

Sure! Here's a sample implementation in Python:
" “python

class Solution:

def isBadVersion(self, version: int) -> bool:
Assume this function is provided

pass

def firstBadVersion(self, n: int) -> int:
low, high = 1, n

while low < high:

mid = (low + high) // 2

if isBadVersion(mid):

high = mid
else:
low = mid + 1

return low

Why is it important to use binary search for the
'First Bad Version' problem?

Using binary search is important because it significantly reduces the number
of checks needed to find the first bad version. Instead of checking each
version sequentially, binary search allows you to halve the search space with
each iteration, making the solution efficient for large inputs.
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Discover the efficient solution to the 'First Bad Version' problem on LeetCode. Learn more about the
approach and optimize your coding skills today!
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