First Bad Version Leetcode Solution

| eetCode Tutorial

278. First Bad
Version

Thied amedyliark

First Bad Version LeetCode Solution is a popular problem that many developers
encounter while practicing coding for interviews or improving their
algorithmic skills. The problem revolves around a scenario where you are
tasked with finding the first bad version of a product from a series of
versions. This article will delve into the problem statement, explain the
binary search approach that leads to an efficient solution, and also provide
a detailed analysis of the time and space complexity involved.

Problem Statement

In the First Bad Version problem, you are given a function “bool
isBadVersion(version) which returns "true if the version is bad and " false"
otherwise. Your goal is to find the first bad version in a sequence of "n°
versions, where versions are numbered from "1° to "n’.

The problem can be summarized as follows:

1. You are given a total of "n° versions.

2. There exists a first bad version, and all subsequent versions are also
bad.

3. You have to determine the first bad version in an optimized manner.

The challenge lies in efficiently narrowing down the range of versions to
find this first bad version, rather than checking each version one by one.

Understanding the Problem

To understand how to approach this problem, let’s clarify a few key points:

Characteristics of the Versions

- Sequential Nature: If version k' is bad, then all versions greater than
"k’ are also bad.

- Existence of a Bad Version: There is guaranteed to be at least one bad
version in the list of versions.

Given this structure, a direct approach (i.e., checking each version
sequentially) would be inefficient, especially for larger values of "'n . The
optimal way to solve this problem is to utilize the properties of binary
search.

Binary Search Approach

Binary search is an efficient algorithm for finding an item from a sorted
list of items. It works by repeatedly dividing the search interval in half.
In this problem, we can leverage the sorted nature of the versions based on
whether they are bad or good.

Steps to Implement Binary Search

1. Initialization: Start with two pointers, “left initialized to "1 and
‘right’ initialized to 'n’.

2. Loop: While "left is less than "right :

- Calculate the midpoint: "'mid = left + (right - left) // 2 .

- Use the “isBadVersion(mid) ™ function to check if the version at "mid" is
bad.

- If it is bad, then the first bad version must be at "'mid’ or to the left of
"mid’ . Thus, set "right = mid .

- If it is not bad, then the first bad version must be to the right of "mid".
Thus, set "left = mid + 1.

3. Termination: Once the loop terminates, "left® will point to the first bad
version.

Code Implementation

Here’s how the binary search algorithm can be implemented in Python:

" python
def isBadVersion(version):
This function is predefined and returns True if the version is bad, False

otherwise.
pass

def firstBadVersion(n):

left, right =1, n

while left < right:

mid = left + (right - left) // 2

if isBadVersion(mid):

right = mid the first bad version is mid or to the left
else:

left = mid + 1 the first bad version is to the right
return left left is now pointing to the first bad version

In this code, we define the " firstBadVersion® function which implements the
binary search logic as described. The “isBadVersion function is assumed to
be predefined and is used to check the status of each version.

Time and Space Complexity Analysis

Understanding the efficiency of the solution is crucial, especially in
competitive programming and real-world applications.

Time Complexity

- The time complexity of this binary search approach is 0(log n). Each
iteration of the while loop effectively halves the search space, leading to
logarithmic time complexity.

Space Complexity

- The space complexity of the algorithm is 0(1l) because we are only using a
constant amount of space for the variables "left’, "right’, and "mid .

Conclusion

The First Bad Version problem is a classic example of how binary search can
be applied to efficiently solve problems that might seem linear at first
glance. By understanding the properties of the problem and leveraging the
binary search algorithm, we can significantly reduce the time complexity from
linear to logarithmic. This not only makes the solution faster but also more
scalable for larger inputs.

Practicing problems like this one is essential for honing your algorithmic
skills and preparing for technical interviews. The key takeaway is to always
look for patterns and properties in the problem that allow you to reduce the
complexity of your solution. With the right approach, even seemingly
difficult problems can be tackled effectively.

Frequently Asked Questions

What is the 'First Bad Version' problem on LeetCode?

The 'First Bad Version' problem is a coding challenge that asks you to find
the first bad version of a software release given a function that can
determine if a version is bad. You need to implement a solution that
efficiently identifies this version using binary search.

What is the optimal time complexity for solving the
'First Bad Version' problem?

The optimal time complexity for solving the 'First Bad Version' problem is
0(log n), where n is the total number of versions. This is achieved by using
a binary search approach.

What is the primary function signature for the
'First Bad Version' solution?

The primary function signature for the solution is typically 'public int
firstBadVersion(int n)', where n represents the total number of versions.

How does the binary search algorithm work in the
context of 'First Bad Version'?

In the binary search algorithm for the 'First Bad Version', you maintain two
pointers, low and high. You check the middle version. If it's bad, it means
the first bad version is either the middle version or to the left; if it's
good, the first bad version must be to the right. You continue narrowing down
until you find the first bad version.

What edge cases should be considered when
implementing the 'First Bad Version' solution?

Edge cases include scenarios where all versions are good, all are bad, or
where there is only one version. You should also handle the case where the
first version is the bad one.

Can you provide a sample code implementation for the

'First Bad Version' problem?

Sure! Here's a sample implementation in Python:
" “python

class Solution:

def isBadVersion(self, version: int) -> bool:
Assume this function is provided

pass

def firstBadVersion(self, n: int) -> int:
low, high = 1, n

while low < high:

mid = (low + high) // 2

if isBadVersion(mid):

high = mid
else:
low = mid + 1

return low

Why is it important to use binary search for the
'First Bad Version' problem?

Using binary search is important because it significantly reduces the number
of checks needed to find the first bad version. Instead of checking each
version sequentially, binary search allows you to halve the search space with
each iteration, making the solution efficient for large inputs.

Find other PDF article:
https://soc.up.edu.ph/33-qgist/files?ID=7t1.27-5250&title=introduction-to-psychology-james-kalat-12t

h-edition.pdf

First Bad Version Leetcode Solution

2025 7] J000O0O0OCORTX 50600
Jun 30, 2025 - 0000000 1080P/2K/4KO00000C0OO0ORTX 506000002 500000000000000

0000000Cfirst nameJ00000_0000
first name [J{ last name 00 J00000“00"000°0"Dlast name[“0”Ofirst name(] J000000“00000007 Jim
Green[J00000000 OO 0OCOO -

001003100000 - 0000
Jun 10, 2022 - 010031000001 00first01st00200second[12nd[]300thirdJ3rd[jJ4J0fourthJ4th{050fifth

[5thO06[0sixth6th]7 ...

https://soc.up.edu.ph/33-gist/files?ID=ZtL27-5250&title=introduction-to-psychology-james-kalat-12th-edition.pdf
https://soc.up.edu.ph/33-gist/files?ID=ZtL27-5250&title=introduction-to-psychology-james-kalat-12th-edition.pdf
https://soc.up.edu.ph/22-check/Book?docid=dma34-0667&title=first-bad-version-leetcode-solution.pdf

1st[12nd[)3rd[]...10th 0000000000002 othOOOO ..
first (][] 1st second [J[] 2nd third] 3rd fourth [J[] 4th fifth [JJ 5th sixth][] 6th seventh [J[] 7th eighth [

00000000 ninth [tenth [eleventh [twelfth [0 ...

O0000000first namelast name? 000
O0000000first name[Jlast name?last name[J[Ifamily name[J[][first name[J[Jgiven name[J[JJJ0Michael

Jordan. Michael[][] (first name)JJordan(][] (last name)[]1[] ...

surname(lfirst name[lfamily name[J000000000
00 0000 surname(ifirst name[lfamily name[J0000000000 10surname, family name[J00first name 0]

200000000surname [Jfamily nameJ00000 ...

0000000000 first name[Jlast name? - [0
00 shiyatoz 002017-11-24 - TAOOOO229100 00 Leszek = first name Godzik = last name [Jfirst

name [J0000000000000Iast name[0000000family ...

stata[]Jivreghdfe[]00 - 0O
00000000000000000Ostata00000000000000000000000000Gy

UUO000O000D0O0O0O0O0O000O0 - 00
0000000000000C000000000000000 (first name)J00,00000 (Iast name). O0000000first name[JJlast
name[J00000000CCCCOO0 O -

Address linel1[]Address line2[J000000_0000

0000000000 000 000 000/Add line 1: 000+0000+0000+000000 O00/Address line2: [00+00+0000
Address line 1000000000 ...

20250 70 00000000RTX 50600
Jun 30, 2025 - 00000000 1080P/2K/4KON00N0000ORTX 506000002500000000000000

0000000Cfirst name00000_0000
first name [J{[] last name 00 J00000“00"000°0"Dlast name[]“0)”Ofirst name(] 0000000 00000007 Jim
Green[JJ00000000 OO 00O0OO -

001003100000 - 0000
Jun 10, 2022 - (010031000001 00first01st00200second[12nd[]300third(J3rd[jJ40fourth[J4th{050fifth

[5thO06[0sixth6th]7 ...

1st[12nd[)3rd[]...10th 0000000000002 othOOOO ..
first (][] 1st second [J[] 2nd third][] 3rd fourth [J[] 4th fifth [JJ 5th sixth][] 6th seventh [J[] 7th eighth [

00000000 ninth [tenth [J] eleventh [twelfth [0 ...

O0000000first namelast name? 000
O000000Cfirst name[Jlast name?last name[J[Ifamily name[J[][first name[J[Jgiven name[J[JJJ0Michael

Jordan. Michael[][] (first name)[JJordan[][] (last name)[]1[] ...

surname[Jfirst name[Jfamily name
00 0000 surname(ifirst name[lfamily name[J0000000000 10surname, family name[J00first name 0]

2[00000000surname [Jfamily nameJ00000 ...

first name[Jlast name? -

00 shiyatoz 0J2017-11-24 - TAOJOJ229100 00 Leszek = first name Godzik = last name [J[JJ{first
name [J000000000000last name[J0000000family ...

stata[JJivreghdfe[J]] - 00
O00000000O0D000COOOstatad00000C0000000OODO000000000 Gy

00000000000000000000i00000 - 0o
O00000000000O00000CO000000000 (first name) 0000000 (last name). OO000000Ofirst name[Jlast
name[J100000000000CCO O ...

Address linel[JAddress line2[JJ00000_0000

0000CCCCO0 000 000 000/Add line 1: 000+0000+0000+000000 O00/Address line2: 000+00+0000
Address line 1000000000 ...

Discover the efficient solution to the 'First Bad Version' problem on LeetCode. Learn more about the
approach and optimize your coding skills today!

Back to Home

https://soc.up.edu.ph

