Extraordinary Substrings Hackerrank
Solution

Solution
of

Number of wonderful
substrings

wwnw.interviewspreparation.com

Extraordinary substrings hackerrank solution is a popular problem featured on
HackerRank that challenges programmers to identify specific substrings within
a given string. The task not only tests coding skills but also enhances one's
ability to manipulate strings and understand various algorithms. This article
delves deep into the problem, providing a comprehensive overview of its
requirements, examples, and a viable solution approach, making it an
essential read for anyone looking to master this challenge.

Understanding the Problem Statement

The extraordinary substrings problem asks you to find substrings within a
given string that meet certain criteria. Specifically, the substrings must be
classified based on their character composition. The typical requirements
involve identifying substrings that contain unique characters or substrings
that can be rearranged to form a palindrome.

When approaching this problem, it is crucial to clarify the requirements as
they may vary slightly based on the specific challenge presented.
Nevertheless, the core idea remains the same: efficiently compute valid
substrings from the input string.

Key Concepts and Definitions

Before diving into the solution, it is essential to understand some key
concepts:

Substring

A substring is any contiguous sequence of characters within a string. For
example, in the string "abcd", the substrings include "a", "ab", "abc",
IladeII’ IIbII’ IIbCII’ Ilbcdll’ "C"’ "Cd"’ and Ildll.

Unique Characters

A substring is said to have unique characters if no character appears more
than once in that substring. For instance, "abc" has unique characters,
whereas "aab" does not.

Palindrome

A palindrome is a string that reads the same forward and backward. For
example, "racecar" is a palindrome, while "hello" is not.

Example Problem

To illustrate the problem, let's consider the following example:

- Input: "abca"
- Output: 4
In this example, the extraordinary substrings are "a", "b", "c", and "abca".

The goal is to compute the number of such valid substrings.

Breaking Down the Solution

Finding extraordinary substrings can be achieved through various approaches,
ranging from brute-force methods to more sophisticated algorithms. Here, we
will explore a few methods before proposing an optimal solution.

Brute-Force Approach

The brute-force method involves generating all possible substrings and
checking each one against the extraordinary condition. While this method is
straightforward, it is inefficient for larger strings due to its 0(n”3) time
complexity.

Steps:
1. Generate all possible substrings.
2. Check each substring for unique characters or palindrome properties.

3. Count valid substrings.

Pros:
- Simple to implement.
- Easy to understand.

Cons:
- Inefficient for long strings.
- High time complexity.

Sliding Window Technique

The sliding window technique can significantly improve performance by
maintaining a dynamic range of characters as we traverse the string. This
method allows us to check for unique characters without generating all
substrings explicitly.

Steps:

1. Use two pointers to define the current window of characters.

2. Expand the window by moving the right pointer and adding characters.
3. Contract the window from the left when a duplicate character is
encountered.

4. Count the valid substrings formed in each window.

Pros:
- More efficient than brute-force.
- Optimal for many string problems.

Cons:
- More complex to implement than brute-force.
- Requires careful management of window boundaries.

Optimal Solution Implementation

Based on the understanding of the problem and the analysis of different
methods, we can now present an optimal solution using the sliding window
approach. This method efficiently counts extraordinary substrings while
maintaining a linear time complexity.

Here is a Python implementation of the solution:
" python

def extraordinary substrings(s):

n = len(s)

count = 0

Iterate through each character in the string

for i in range(n):
char _count = {}
unique count = 0

Start a new substring from index i
for j in range(i, n):
char = s[j]

If the character is new, add it to the dictionary
if char not in char count:

char count[char] = 0

unique_count += 1

char _count[char] += 1

Check if the current substring is extraordinary

if unique_count == len(char count) and all(v == 1 for v in
char _count.values()):
count += 1

return count

Example usage
s = "abca"
print(extraordinary substrings(s)) Output: 4

Explanation of the Code:

- We iterate through each character in the string, treating it as the
starting point of a new substring.

- A dictionary (" char count’) keeps track of character frequencies to check
for unique characters.

- For each possible ending index of the substring, we update the dictionary
and check if all characters are unique.

- If they are, we increment our count of extraordinary substrings.

Conclusion

The extraordinary substrings problem on HackerRank is an excellent way to
enhance your string manipulation and algorithmic skills. By exploring
different approaches—from brute-force methods to optimized sliding window
techniques—you can gain a deeper understanding of how to tackle similar
programming challenges efficiently.

Remember that while the brute-force method may be easier to implement, the
sliding window technique provides a more scalable solution for larger inputs.
As you practice, aim to refine your skills in recognizing patterns and
applying the most suitable algorithms to solve problems effectively. Happy
coding!

Frequently Asked Questions

What is the 'Extraordinary Substrings' problem on
HackerRank?

The 'Extraordinary Substrings' problem involves finding substrings of a given
string that meet specific criteria based on the frequency of characters. The
goal is to count how many substrings can be classified as extraordinary.

What are the criteria for a substring to be
considered extraordinary?

A substring is considered extraordinary if all characters in it have the same
frequency of occurrence. For example, 'aabb' is extraordinary because both
‘a' and 'b' appear twice.

How can I approach solving the Extraordinary
Substrings problem?

To solve the problem, you can iterate through all possible substrings of the
input string, count the frequency of each character in those substrings, and
check if all characters have the same frequency.

Are there any efficient algorithms to solve the
Extraordinary Substrings problem?

Yes, using a sliding window technique along with character frequency counting
can reduce the time complexity. You can maintain a count of characters in the
current window and adjust as you expand or contract the window.

What are common pitfalls to avoid when solving this
problem?

Common pitfalls include not considering edge cases like single-character
substrings and forgetting to reset character counts properly when moving to
the next substring.

Where can I find sample test cases for the
Extraordinary Substrings problem?

Sample test cases can typically be found in the HackerRank problem statement,
and you can also create your own test cases by manually checking substrings
and their character frequencies.

Find other PDF article:
https://soc.up.edu.ph/16-news/pdf?ID=vTF08-0687 &title=data-quality-analysis-dashboards.pdf

https://soc.up.edu.ph/16-news/pdf?ID=vTF08-0687&title=data-quality-analysis-dashboards.pdf

Extraordinary Substrings Hackerrank Solution

OExtraordinary(]J000000000 | HiNative
OExtraordinary(J00000000000CCCOO00Q&ANDExtraordinary[JI0000000000000000188000000000000000
0oooaaaa -

Hordinary(] [] Jextraordinary] 00000
000000000Cordinary(ji0extraor... 000000000004 0000000000000 inative 0" DOOO0000" DO0OOCOOO000C0O
oo ...

Jexceptional[] [] Jextraordinary [] 000000 ...
000000000Cexcepti...OJ00extraor...00000000CCCO20000000000000H Inative[0" DOCCOO00" COOOOOO000000O
aaa ...

"extraordinary" [] "remarkable" [J[J000000 | HiNative
extraordinary means very unusual. example: he is an extraordinary guy. remarkable means worthy
of attention. example: the incident is remarkably ...

"extraordinary” [] "remarkable" (000000 | HiNative
extraordinary[JJ[[Jextraordinary means very unusual. example: he is an extraordinary guy.
remarkable means worthy of attention. example: the ...

OExtraordinary(](000000000 | HiNative

[ExtraordinaryJ0000000C000000C000Q&ANDExtraordinary NON0N0N000000NOC01 88000000000000OC0O
yuuoooooooonn

Hordinary] (] Qextraordinary(] 00000 ... - HiNative
00000CC0O0ordinary(00extraor... 0O0000000004000000000CCCCHInative 00" DOCCCO0O"000000000CCCCO
Uoo0oooooan -

Oexceptional(] [] extraordinary [000000000
00000CCCO0excepti...j00extraor... QO00000000020000000000000Hinative 0" 00000000 DOOOO00000000
00ooo00ooa ..

"extraordinary" [] "remarkable" [J[J000000 | HiNative
extraordinary means very unusual. example: he is an extraordinary guy. remarkable means worthy
of attention. example: the incident is remarkably different. however they both have ...

"extraordinary" [] "remarkable" 000000 | HiNative
extraordinary[JJJextraordinary means very unusual. example: he is an extraordinary guy.
remarkable means worthy of attention. example: the incident is remarkably different. however ...

Hextraordinary(] [INo ordinary(] 00 ... - HiNative
Extraordinary (J00000000000CCCCCCOO0000000000001CCCCCCOO00OD0000000000C Not ordinary 00000
0doootooooa ..

extraordinary[JJ0a0an - 0000
extraordinary(J[jJa[JJanextraordinary[J000000000000000000000CO01 . It is very extraordinary that I
should meet him here.[J000000000000

https://soc.up.edu.ph/21-brief/pdf?docid=atu99-0565&title=extraordinary-substrings-hackerrank-solution.pdf

"unusual” [] "extraordinary" [JJ0J0000 | HiNative
unusual [J extraordinary 000000 O0COO0000O0000000 Danielg 201707090 00 (00) 0000 (COO)

"phenomenal" [] "extraordinary" [] "remarkable" []000000
phenomenalThey technically mean the same but I feel that they are generally used in increasing
intensity. That's remarkable! - * That's pretty cool! (It's notably good) That's extraordinary! - ** ...

“EGM”[0000_0000
Jun 11, 2024 - 0000"EGM"[000000000"Extraordinary General Meeting" 000000000000 000000000CO
000000000“lin shi gu dong da hui”[] ...

Unlock the secrets of the Extraordinary Substrings HackerRank solution! Dive into our
comprehensive guide and solve challenges effortlessly. Learn more now!

Back to Home

https://soc.up.edu.ph

