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Engineering mathematics 3 solved problems encompass a wide range of
mathematical concepts and techniques that are crucial for engineering
students. This branch of mathematics typically covers areas such as
differential equations, vector calculus, complex variables, and numerical
methods. Mastering these topics not only helps students in their academic
pursuits but also provides essential tools for solving practical engineering
problems. In this article, we will explore various solved problems in

engineering mathematics 3, providing clear explanations and insights into

each concept.

Understanding Differential Equations

Differential equations play a fundamental role in modeling various

engineering phenomena. They describe the relationship between a function and



its derivatives and can be classified into ordinary differential equations
(ODEs) and partial differential equations (PDEs).

Example Problem 1: First-Order Linear ODE

Consider the first-order linear ordinary differential equation:
\[ \frac{dy}{dx} + P(x)y = Q(x) \]

where \( P(x) = 2x \) and \( Q(x) = e"{-x"2} \).

Solution Steps:

1. Identify \( P(x) \) and \( Q(x) \):
- \( P(x) = 2x \)
- \( Q(x) = e™{-x"2} \)

2. Find the Integrating Factor:

The integrating factor \( \mu(x) \) is given by:

\ [

\mu (x) = e™{\int P(x) \, dx} = e*{\int 2x \, dx} = e™{x"2}
\]

3. Multiply the ODE by the Integrating Factor:

\ [

e™{x"2} \frac{dy}{dx} + e™{x"2} \cdot 2xy = e™{x"2} e™{-x"2}
\1]

Simplifying gives:

\

e™{x"2} \frac{dy}{dx} + 2xy e*{x"2} =1
\1]

4. Rearranging the equation:
\

\frac{d}{dx} (y e™{x"2}) =1
\1]

5. Integrate both sides:

\ [

y e {x"2} = x + C

\1]

where \( C \) is the constant of integration.

6. Solve for \( y \):
\ [

y = (x + C)e™{-x"2}
\]

Final Solution:
The general solution to the differential equation is:
N[y = (x + C)er{-x"2} \]

Vector Calculus and Its Applications

Vector calculus i1s an essential area of mathematics that deals with wvector



fields and their derivatives. It is particularly useful in physics and
engineering, providing the mathematical framework for analyzing phenomena
such as fluid flow and electromagnetic fields.

Example Problem 2: Gradient, Divergence, and Curl

Given a scalar field \( \phi(x, y, z) = x*2 + y*2 + 2”2 \) and a vector field
\( \mathbf{F} (x, vy, z) = (xy, vz, zx) \), compute the gradient of \( \phi \),
the divergence of \( \mathbf{F} \), and the curl of \( \mathbf{F} \).

Solution Steps:

1. Calculate the Gradient of \( \phi \):

The gradient \( \nabla \phi \) is given by:

\ [

\nabla \phi = \left( \frac{\partial \phi}{\partial x}, \frac{\partial
\phi}{\partial vy}, \frac{\partial \phi}{\partial z} \right)

\]

Therefore:

\ [

\frac{\partial \phi}{\partial x} = 2x, \quad \frac{\partial \phi}{\partial y}
= 2y, \quad \frac{\partial \phi}{\partial z} = 2z

\]

Thus,

\ [

\nabla \phi = (2x, 2y, 2z)

\]

2. Calculate the Divergence of \( \mathbf{F} \):

The divergence \ ( \nabla \cdot \mathbf{F} \) is given by:

\ [

\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial
F_2}{\partial y} + \frac{\partial F_3}{\partial =z}

\1

Therefore:

\ [

\frac{\partial (xy)}{\partial x} + \frac{\partial (yz)}{\partial y} +
\frac{\partial (zx)}{\partial z} =y + z + x

\1

Thus,

\ [

\nabla \cdot \mathbf{F} = x + y + z

\1

3. Calculate the Curl of \( \mathbf{F} \):

The curl \( \nabla \times \mathbf{F} \) 1is given by:

\ [

\nabla \times \mathbf{F} = \left( \frac{\partial F_3}{\partial y} -
\frac{\partial F_2}{\partial =z}, \frac{\partial F_1}{\partial z} -
\frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} -
\frac{\partial F_1}{\partial y} \right)

\]

Therefore:

\ [

\frac{\partial (zx)}{\partial y} - \frac{\partial (yz) }{\partial z} =0 -y =
Y

\]



\ [

\frac{\partial (xy)}{\partial z} - \frac{\partial (zx) }{\partial x} = 0 - z
-z

\1

\ [

\frac{\partial (yz)}{\partial x} - \frac{\partial (xy) }{\partial y}
-x

[
o

I
X

\]

Thus,

\ [

\nabla \times \mathbf{F} = (-y, -z, -Xx)

\]

Final Results:

- Gradient: \( \nabla \phi = (2x, 2y, 2z) \)

— Divergence: \( \nabla \cdot \mathbf{F} = x + y + z \)
- Curl: \( \nabla \times \mathbf{F} = (-y, -z, -x) \)

Complex Variables in Engineering

Complex variables are another vital area in engineering mathematics,
particularly in fields like electrical engineering and fluid dynamics. They
provide powerful methods for solving problems that involve oscillatory
behavior.

Example Problem 3: Analytic Function

Determine if the function \( f(z) = z72 + 3z + 2 \) is analytic in the
complex plane.

Solution Steps:
1. Check for Analyticity:
A function \( f(z) \) 1is analytic if it is differentiable in an open region

of the complex plane.

2. Calculate the Derivative:
The derivative \( f£'(z) \) 1is:

\ [

f'(z) = 2z + 3

\1]

3. Check the Cauchy-Riemann Equations:

Let \( z = x + iy \) where \( f(z) = u(x, y) + iv(x, y) \):
- The real part \( u(x, y) = x"2 - y*"2 + 3x - 3y + 2 \)

— The imaginary part \( v(x, y) = 2xy + 3y \)

The Cauchy-Riemann equations are:

\ [

\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad
\frac{\partial ul}{\partial y} -\frac{\partial v}{\partial x}

\]

Calculate the partial derivatives:
- \( \frac{\partial u}{\partial x} = 2x + 3 \)



\ ( \frac{\partial v}i{\partial y} = 2x + 3 \)
- \( \frac{\partial u}{\partial y} = -2y \)
\( \frac{\partial v}{\partial x} = 2y \)

Both equations hold true, indicating \( f(z) \) satisfies the Cauchy-Riemann
equations.

Final Conclusion:
The function \( f(z) = z"2 + 3z + 2 \) 1is analytic everywhere in the complex
plane.

Numerical Methods in Engineering

Numerical methods are essential for approximating solutions to problems that
cannot be solved analytically. They are widely used in engineering for
simulations, optimizations, and modeling.

Example Problem 4: Newton—-Raphson Method

Use the Newton—-Raphson method to find a root of the equation \( f(x) = x"2 -
4 \).

Frequently Asked Questions

What are some common topics covered in Engineering
Mathematics 37?

Common topics include differential equations, vector calculus, complex
variables, and numerical methods.

Can you provide an example of a solved problem
involving differential equations?

Sure! A typical problem would be solving the first-order linear differential
equation dy/dx + P(x)y = Q(x) using an integrating factor.

What numerical methods are frequently taught in
Engineering Mathematics 37

Numerical methods such as Euler's method, Runge-Kutta methods, and finite
difference methods for solving differential equations are commonly taught.

How is vector calculus applied in engineering
mathematics?

Vector calculus is used to analyze and solve problems involving vector
fields, such as fluid flow and electromagnetism.



What is the importance of complex variables in
engineering mathematics?

Complex variables are important for simplifying problems in electrical
engineering, control systems, and fluid dynamics.

How do you solve a partial differential equation
(PDE) using separation of wvariables?

To solve a PDE using separation of variables, assume a solution can be
written as a product of functions, each depending on a single variable, and
then separate the variables to solve.

Can you explain a solved problem involving Fourier
series?

A common problem involves finding the Fourier series expansion of a periodic
function, which allows for analysis of signals in frequency domain.

What role does Laplace Transform play in engineering
mathematics?

Laplace Transform is used to convert differential equations into algebraic
equations, making them easier to solve, especially in control systems.

What types of problems can be solved using linear
algebra in engineering?

Linear algebra can be used to solve systems of linear equations, perform
transformations, and analyze stability in engineering systems.

How do you apply the method of characteristics to
solve hyperbolic PDEs?

The method of characteristics involves transforming the PDE into a set of
ordinary differential equations along characteristic curves, which can then
be solved for the solution.
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