Chain Rule Calculus Examples
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Chain rule calculus examples are essential for anyone delving into the world
of differentiation in calculus. The chain rule is a powerful tool that allows
us to differentiate composite functions, which are functions that are made up
of other functions. Understanding the chain rule is crucial for solving
complex problems in mathematics, physics, engineering, and various fields of
science. In this article, we'll explore the chain rule in depth, provide
several examples, and demonstrate its application in real-world scenarios.

Understanding the Chain Rule

The chain rule states that if you have a function that is composed of two or
more functions, the derivative of that composite function can be found by
taking the derivative of the outer function and multiplying it by the
derivative of the inner function. Formally, if you have two functions \( f (x)
\) and \( g(x) \), the chain rule can be expressed as:

\[ \frac{d}{dx}[f(g(x))] = £'(g(x)) \cdot g'(x) \]

This means that to differentiate \( f(g(x)) \), you first differentiate \( £
\) with respect to \( g \), and then multiply that result by the derivative
of \( g \) with respect to \( x \).

Basic Examples of the Chain Rule

To better illustrate how the chain rule works, let's go through some basic
examples.

Example 1: Polynomial and Trigonometric Function

Let’s differentiate the function \( y = \sin(x"2) \).



1. Identify the outer and inner functions:
— Outer function: \( f(u) = \sin(u) \) where \( u = x"*2 \)
— Inner function: \( g(x) = x"2 \)

2. Differentiate both functions:

— Derivative of the outer function: \( f£'(u) = \cos(u) \)

- Derivative of the inner function: \( g'(x) = 2x \)

3. Apply the chain rule:

\ [

\frac{dy}{dx} = f£'(g(x)) \cdot g'(x) = \cos(x"2) \cdot 2x = 2x\cos (x"2)
\1

Thus, the derivative of \( y = \sin(x"2) \) 1is \( \frac{dy}{dx} = 2x\cos (x"2)

\) .

Example 2: Exponential Function

Now, let’s differentiate the function \( y = e™{3x} \).

1. Identify the outer and inner functions:
— Outer function: \( f(u) = e”u \) where \( u = 3x \)
— Inner function: \( g(x) 3% \)

2. Differentiate both functions:

— Derivative of the outer function: \( £'(u) = e™u \)

— Derivative of the inner function: \( g'(x) = 3 \)

3. Apply the chain rule:

\ [

\frac{dy}{dx} = £'(g(x)) \cdot g'(x) = e*{3x} \cdot 3 = 3e”{3x}
\]

Thus, the derivative of \( y = e”{3x} \) 1is \( \frac{dy}{dx} = 3e{3x} \).

Applying the Chain Rule in Complex Functions

The chain rule becomes even more useful when dealing with more complex
functions. Let’s look at a couple of examples that illustrate this.

Example 3: A Combination of Functions

Consider the function \( y = (2x + 1)75 \).

1. Identify the outer and inner functions:
— Outer function: \( f(u) = u”5 \) where \( u = 2x + 1 \)
— Inner function: \( g(x) = 2x + 1 \)

2. Differentiate both functions:
— Derivative of the outer function: \( f£'(u) = 5u™4 \)
- Derivative of the inner function: \( g' (x) 2 \)

3. Apply the chain rule:



\ [

\frac{dy}{dx} = £'(g(x)) \cdot g'(x) =
\1

Thus, the derivative of \(y = (2x + 1)
1)y7~4 \) .

Example 4: Nested Functions

5(2x + 1)”74 \cdot 2

10(2x + 1)74

25 \) 1is \( \frac{dy}{dx} 10 (2x +

Let's differentiate the function \( y = \1In(5x"2 + 3) \).

1. Identify the outer and inner functions:

— Outer function: \( f(u) = \ln(u) \) where \( u = 5x"°2 + 3 \)

— Inner function: \( g(x) = 5x"2 + 3 \)

2. Differentiate both functions:

— Derivative of the outer function: \( f£'(u) = \frac{l}{u} \)

— Derivative of the inner function: \( g'(x) = 10x \)

3. Apply the chain rule:

\ [

\frac{dy}{dx} = £'(g(x)) \cdot g'(x) = \frac{l1}{5x"2 + 3} \cdot 10x =
\frac{10x}{5x"2 + 3}

\]

Thus, the derivative of \( y = \1In(5x72 + 3) \) is \( \frac{dy}{dx} =

\frac{10x}{5x"2 + 3} \).

Practice Problems

To solidify your understanding of the chain rule,

practice problems:

consider trying these

\) .

\) .

1. Differentiate \( y = \sqgrt{x"3 + 2x}
2. Differentiate \( y = \tan(4x - 1) \).
3. Differentiate \( y = (3x + 4)"7 \).
4. Differentiate \( y = \cos(2x"2 + 1)
Conclusion

The chain rule is a fundamental concept
differentiation of composite functions.
be well-equipped to tackle a wide range
applied sciences. The examples provided

inner functions and apply the chain rule effectively.

in calculus that allows for the

By mastering the chain rule, you will
of problems in mathematics and
demonstrate how to identify outer and
Practice applying the

chain rule with different functions to gain confidence in your skills. As you

delve deeper into calculus,
tool in your mathematical toolbox.

remember that the chain rule is an invaluable



Frequently Asked Questions

What is the chain rule in calculus?

The chain rule is a formula for computing the derivative of the composition
of two or more functions. It states that if you have two functions, f(g(x)),
the derivative is f'(g(x)) g'(x).

Can you provide an example of using the chain rule
with exponential functions?

3x72), to find dy/dx, we use the chain rule: dy/dx = e” (3x"2)

Sure! If yv = e (
= e™(3x"2) 6bx.

(d/dx (3x"2))

How do you apply the chain rule to trigonometric
functions?

If vy = sin(2x), then using the chain rule, dy/dx = cos(2x) (d/dx(2x)) =
cos (2x) 2.

What is an example of the chain rule with a
polynomial function?

For the function y = (3x72 + 1)74, apply the chain rule: dy/dx = 4(3x"2 +
1)7"3 (d/dx(3x"2)) = 4(3x"2 + 1)"3 6x%.

How does the chain rule work with logarithmic
functions?

For y = 1In(5x"3 + 2), we use the chain rule: dy/dx = 1/(5x"3 + 2) (d/dx(5x"3
+ 2)) = 1/(5x"3 + 2) 15x"2.

Can you illustrate the chain rule with a composite
function example?

Certainly! If y = (sin(x"2))"3, then dy/dx = 3(sin(x"2))"2 (d/dx(sin(x"2))) =
3(sin(x"2))"2 cos(x"2) 2x.

What is the chain rule when dealing with multiple
compositions?

For y = cos (5x"2 + 3x), dy/dx = —-sin(5x"2 + 3x) (d/dx(5x"2 + 3x)) = -sin(5x"2
+ 3x) (10x + 3).

How is the chain rule used in implicit

differentiation?
When differentiating implicitly, such as in x*2 + y*2 = 1, we can use the
chain rule for y: 2x + 2y(dy/dx) = 0, leading to dy/dx = -x/y.

What is a real-world application of the chain rule?

The chain rule is often used in physics to relate different rates of change,
such as in related rates problems where one quantity changes in relation to



another.

How do you combine the chain rule with the product or
quotient rule?

When using the chain rule with the product or quotient rule, you
differentiate each part separately and apply the chain rule to the functions
involved. For example, for y = x*2 sin(3x), you would use both rules to find
dy/dx.
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Explore essential chain rule calculus examples to master differentiation techniques. Simplify
complex problems with clear explanations. Learn more today!
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