
Busy Intersection Hackerrank Solution
Github

Busy Intersection HackerRank Solution GitHub is a topic that resonates with
many programming enthusiasts and competitive coders. HackerRank is a popular
platform for coding challenges and contests, where programmers can test their
skills and improve their coding proficiency. One such challenge is the "Busy
Intersection" problem, which tests one's ability to apply algorithmic
thinking and data structure knowledge to solve real-world scenarios. This
article delves into the details of the Busy Intersection problem on
HackerRank, the strategies for solving it, and how to find solutions on
GitHub.

Understanding the Busy Intersection Problem

The "Busy Intersection" problem typically involves simulating a traffic
scenario where multiple vehicles approach an intersection. The objective is
often to determine how many vehicles can efficiently cross the intersection
without causing congestion, or to calculate the time taken for all vehicles
to clear the intersection.

Problem Statement

While the specifics may vary, a common version of the problem might involve:

- A set number of vehicles approaching an intersection.
- Each vehicle has a defined entry time and a duration for which it will
occupy the intersection.
- The goal is to determine the maximum number of vehicles that can pass
through the intersection during a specified time frame without overlapping.



Input and Output Format

Typically, the input format for the Busy Intersection problem might look like
this:

- The first line contains an integer `n`, representing the number of
vehicles.
- The next `n` lines each contain two integers: `entry_time` and `duration`
for each vehicle.

The output would usually be a single integer indicating the maximum number of
vehicles that can pass through the intersection.

Approaching the Solution

To solve the Busy Intersection problem efficiently, you can adopt a
systematic approach. Here are the general steps:

1. Parse the Input: Read the number of vehicles and their respective entry
times and durations.
2. Generate Event Points: For each vehicle, create two events: one for the
entry and one for the exit (entry_time and entry_time + duration).
3. Sort Events: Sort these events based on their time, ensuring that entry
events are processed before exit events if they occur at the same time.
4. Simulate the Intersection: Use a counter to track the number of vehicles
in the intersection at any given time and maximize the count while ensuring
no two vehicles overlap.

Algorithm: Greedy Approach

A greedy algorithm can efficiently solve this problem. Here's a brief
overview of the approach:

- Initialization: Start with an empty intersection and a count of vehicles.
- Iterate through Events: Loop through the sorted event list:
- If you encounter an entry event and the intersection is empty, allow the
vehicle to enter and increment the count.
- If you encounter an exit event, remove the vehicle from the intersection.
- Result: The count at the end of the iteration will give the maximum number
of vehicles that can cross.

Implementation Example

Here is a simple Python implementation of the Busy Intersection solution:



```python
def busy_intersection(vehicles):
events = []

Generate events for entry and exit
for entry_time, duration in vehicles:
events.append((entry_time, 'enter'))
events.append((entry_time + duration, 'exit'))

Sort events: first by time, then by type of event
events.sort(key=lambda x: (x[0], x[1] == 'exit'))

max_vehicles = 0
current_vehicles = 0

Simulate the intersection
for time, event in events:
if event == 'enter':
current_vehicles += 1
max_vehicles = max(max_vehicles, current_vehicles)
else:
current_vehicles -= 1

return max_vehicles

Example usage
vehicles = [(1, 2), (2, 1), (3, 3)]
print(busy_intersection(vehicles)) Output: 2
```

Finding Solutions on GitHub

GitHub is a treasure trove of coding solutions, collaborative projects, and
repositories dedicated to various coding challenges, including those from
HackerRank. To find solutions for the Busy Intersection problem, you can
follow these steps:

1. Search GitHub: Use the search bar to look for “Busy Intersection
HackerRank solution”. You can also add programming languages to narrow down
results (e.g., "Busy Intersection HackerRank solution Python").

2. Explore Repositories: Look through various repositories that might contain
solutions for multiple HackerRank problems. Developers often group similar
challenges together.

3. Check for Readme Files: Many GitHub repositories include a Readme file
that outlines how to use the code, the problem statement, and sometimes even
the test cases.



4. Look for Forks and Stars: Check the number of forks and stars on
repositories to gauge their popularity and reliability.

5. Contribute: If you come up with an efficient solution or improvements on
existing solutions, consider contributing back to the community by creating a
pull request.

Best Practices for Coding Challenges

When tackling coding challenges like the Busy Intersection problem, it is
essential to adopt best practices:

- Read the Problem Statement Carefully: Ensure you understand the
requirements and constraints before jumping into coding.
- Plan Your Solution: Spend a few minutes planning your approach and writing
pseudocode if necessary.
- Test with Edge Cases: Consider edge cases and test your solution against
them.
- Optimize: Once you have a working solution, think about ways to optimize it
for better performance.
- Comment Your Code: Write comments to explain the logic, especially if your
solution is complex.

Conclusion

The Busy Intersection problem is an excellent example of how algorithmic
thinking can be applied to real-world scenarios. By understanding the problem
statement, breaking it down into manageable steps, and employing a greedy
algorithm, one can efficiently solve this challenge. Moreover, platforms like
GitHub serve as valuable resources for finding solutions, sharing knowledge,
and collaborating with others in the coding community. Embracing these
practices not only enhances your coding skills but also prepares you for more
complex challenges in the future.

Frequently Asked Questions

What is the 'Busy Intersection' problem on
HackerRank?
The 'Busy Intersection' problem on HackerRank involves finding the number of
intersections that are busy based on car movements in a grid-like city
layout, requiring efficient algorithmic solutions to handle potentially large
input sizes.



Where can I find solutions to the 'Busy
Intersection' problem on GitHub?
You can find various implementations and solutions to the 'Busy Intersection'
problem by searching for repositories on GitHub with keywords like 'Busy
Intersection HackerRank solution' or by exploring popular coding
repositories.

What programming languages are commonly used for the
'Busy Intersection' solutions on GitHub?
Common programming languages used for the 'Busy Intersection' solutions
include Python, Java, C++, and JavaScript, with many solutions demonstrating
different approaches to the problem.

Are there any specific algorithmic techniques used
in 'Busy Intersection' solutions?
Yes, solutions often utilize algorithmic techniques such as coordinate
compression, sweep line algorithms, and data structures like segment trees or
binary indexed trees to efficiently count busy intersections.

How can I improve my solution for the 'Busy
Intersection' problem?
To improve your solution, focus on optimizing time complexity by using
efficient data structures, reducing redundant calculations, and ensuring you
understand the underlying mathematical principles of intersection counting.

What are common pitfalls when solving the 'Busy
Intersection' problem?
Common pitfalls include misunderstanding the input format, miscalculating the
intersections based on vehicle paths, and not optimizing for large datasets
which can lead to time limit exceeded errors.

Can I collaborate with others on GitHub for solving
'Busy Intersection'?
Yes, GitHub allows for collaboration through features like forking
repositories, creating pull requests, and discussing issues, making it a
great platform to work with others on solutions to the 'Busy Intersection'
problem.

Find other PDF article:
https://soc.up.edu.ph/16-news/pdf?trackid=TcD11-3378&title=data-analysis-science-project-example
.pdf

https://soc.up.edu.ph/16-news/pdf?trackid=TcD11-3378&title=data-analysis-science-project-example.pdf
https://soc.up.edu.ph/16-news/pdf?trackid=TcD11-3378&title=data-analysis-science-project-example.pdf


Busy Intersection Hackerrank Solution Github

steam远程同乐主机繁忙时,输入暂时禁用 - 百度知道
Mar 31, 2022 · 主机繁忙，输入暂时禁用设置访问权限。 steam远程同乐可以与Steam好友在线畅玩本地多人游戏，在玩家间流式传输视频，音频，输入和语音，使用自
己的控制器，或共用键盘和鼠标，当主机繁忙时，输入暂时禁用对方就没有访问权限了。

be busy doing sth和be busy with sth 的区别是什么？_百度知道
2.语义差异：be busy doing sth强调正在进行某项活动，而be busy with sth强调忙于某个具体事务。 -She is always busy with
handling the company's daily affairs.

be busy to do sth.和be busy doing的区别 - 百度知道
be busy doing：表示正在做某事的一个状态 be too busy to do sth：表示一个目标 其他相关例句 ①、be busy doing The plan for the
new book is on ice at the moment.I've been busy with too many other things. 写那本新书的计划暂时搁一下,我一直忙于太
多其它的事情. He is …

busy 的用法？ - 百度知道
Mar 1, 2008 · busy adj. 忙碌的, 繁忙的 [美] (电话)占线的 勤勉的, 专心致志的 爱管闲事的 (in) 繁华的, 热闹的 (图案)复杂的, 令人眼花缭乱的, 不和谐的 a
busy Sunday 一个忙碌的星期天 a busy street 热闹的街道 get a busy signal 从 (听筒中)听到占线的信号声 be busy in another's
affair 喜欢干涉别人的事 习惯用语 busy oneself with 忙于 ...

be busy in 和be busy with的区别是什么？ - 百度知道
三、引证用法不同 1、be busy in：busy用作形容词的基本意思是“忙的”，通常指人经常或暂时埋头于一项工作，含有“热衷于”的意味。 busy作“繁忙的; 热闹的”解时可修
饰物或事物。 2、be busy with：busy在句中可用作定语或 表语。

佳能相机有时快门摁了没用，出现BUSY字样怎么处理？_百度知道
佳能相机有时快门摁了没用，出现BUSY字样怎么处理？ 佳能相机出现BUSY字样意思是相机处于繁忙状态，这是一种正常的情况，产生这种情况的原因以及处理方法如下：1、相机的
内存卡读写速度太慢，属于廉价的低速卡。

busy的用法和固定搭配 - 百度知道
busy的用法和常用的搭配如下 1、busy的意思是忙碌的，是一个形容词 be busy with sth 忙于 做某事 be busy doing sth 忙于做某事 busy
oneself with sth 使自己忙于做某事 2、busy 用作形容词的意思是忙碌的，是指人经常的忙于做一件事情busy作繁忙的意思时可以修饰物或者是事物 3、当busy用作
表语时，后面也是可以 ...

“对不起，您拨打的号码暂时无法接通”那段话怎么说，带英文的
“对不起，您拨打的号码暂时无法接通”那段话怎么说，带英文的中文：对不起!您拨打的用户暂时无法接通,请稍后再拨.。英文：Sorry!The subscriber you dialed
can not be connected for the moment, please redial la

Linux下执行程序出现 Text file busy 提示时的解决方法_百度知道
Mar 8, 2025 · 在Linux下执行程序出现”Text file busy”提示时，可以采取以下解决方法： 使用fuser命令查找占用文件的进程： 首先，尝试使用fuser命令
来查看哪个进程正在使用指定的文件。例如，如果文件名是Xfbdev，可以运行fuser Xfbdev。 如果在普通用户下运行fuser命令没有结果，可能是因为该文件是由root用
户或其他 ...

be busy doing还是be busy to do的区别是什么? - 百度知道
"be busy doing sth" 是更常见和常规的表达方式，表示在某个时间段内正在忙于做某事。 例如："I am busy doing my homework"（我正忙着做作
业）。 "be busy to do sth" 的用法相对较少，通常用于表示某人忙于做某事而无法做另一件事情。

steam远程同乐主机繁忙时,输入暂时禁用 - 百度知道
Mar 31, 2022 · 主机繁忙，输入暂时禁用设置访问权限。 steam远程同乐可以与Steam好友在线畅玩本地多人游戏，在玩家间流式传输视频，音频，输入和语音，使用自
己的控制器，或共用键 …

https://soc.up.edu.ph/10-plan/pdf?dataid=GSa52-7688&title=busy-intersection-hackerrank-solution-github.pdf


be busy doing sth和be busy with sth 的区别是什么？_百度知道
2.语义差异：be busy doing sth强调正在进行某项活动，而be busy with sth强调忙于某个具体事务。 -She is always busy with
handling the company's daily affairs.

be busy to do sth.和be busy doing的区别 - 百度知道
be busy doing：表示正在做某事的一个状态 be too busy to do sth：表示一个目标 其他相关例句 ①、be busy doing The plan for the
new book is on ice at the moment.I've been busy with …

busy 的用法？ - 百度知道
Mar 1, 2008 · busy adj. 忙碌的, 繁忙的 [美] (电话)占线的 勤勉的, 专心致志的 爱管闲事的 (in) 繁华的, 热闹的 (图案)复杂的, 令人眼花缭乱的, 不和谐的 a
busy Sunday 一个忙碌的星期天 a busy …

be busy in 和be busy with的区别是什么？ - 百度知道
三、引证用法不同 1、be busy in：busy用作形容词的基本意思是“忙的”，通常指人经常或暂时埋头于一项工作，含有“热衷于”的意味。 busy作“繁忙的; 热闹的”解时可修
饰物或事物。 2、be …

佳能相机有时快门摁了没用，出现BUSY字样怎么处理？_百度知道
佳能相机有时快门摁了没用，出现BUSY字样怎么处理？ 佳能相机出现BUSY字样意思是相机处于繁忙状态，这是一种正常的情况，产生这种情况的原因以及处理方法如下：1、相机的
内存卡 …

busy的用法和固定搭配 - 百度知道
busy的用法和常用的搭配如下 1、busy的意思是忙碌的，是一个形容词 be busy with sth 忙于 做某事 be busy doing sth 忙于做某事 busy
oneself with sth 使自己忙于做某事 2、busy 用作形容 …

“对不起，您拨打的号码暂时无法接通”那段话怎么说，带英文的
“对不起，您拨打的号码暂时无法接通”那段话怎么说，带英文的中文：对不起!您拨打的用户暂时无法接通,请稍后再拨.。英文：Sorry!The subscriber you dialed
can not be connected for the …

Linux下执行程序出现 Text file busy 提示时的解决方法_百度知道
Mar 8, 2025 · 在Linux下执行程序出现”Text file busy”提示时，可以采取以下解决方法： 使用fuser命令查找占用文件的进程： 首先，尝试使用fuser命令
来查看哪个进程正在使用指定的文 …

be busy doing还是be busy to do的区别是什么? - 百度知道
"be busy doing sth" 是更常见和常规的表达方式，表示在某个时间段内正在忙于做某事。 例如："I am busy doing my homework"（我正忙着做作
业）。 "be busy to do sth" 的用法相对较少，通 …

Discover the Busy Intersection HackerRank solution on GitHub! Improve your coding skills with our
clear explanations and practical examples. Learn more now!

Back to Home

https://soc.up.edu.ph

