
Bank Transaction Hackerrank Solution

Bank transaction hackerrank solution is a common problem faced by many programmers
and software developers as they seek to enhance their algorithmic problem-solving skills.
This challenge tests a candidate's ability to manipulate data structures, implement
efficient algorithms, and understand the nuances of transaction management within the
context of banking systems. In this article, we will explore the problem in detail, discuss
potential solutions, and provide a comprehensive understanding of the concepts involved.

Understanding the Problem Statement

The bank transaction problem typically presents a scenario where a series of bank
transactions are performed, and the goal is to evaluate these transactions based on certain
criteria. The problem may vary in complexity, but generally, it involves:

1. Transaction Details: Each transaction is characterized by attributes such as the amount,
date, type (debit or credit), and possibly the account number.
2. Constraints: There could be constraints such as the maximum allowable balance, daily
transaction limits, and rules for overdrafts.
3. Output Requirements: The required output might include a summary of successful
transactions, the total balance after all transactions, or a report of failed transactions.

Example Problem

Consider a scenario where you have a list of transactions and need to determine whether
each transaction can be processed given the current balance. Here’s a simplified example:

- Initial Balance: $1000
- Transactions:
- Deposit: $200
- Withdraw: $1500
- Withdraw: $500



- Deposit: $300

In this case, the second transaction (withdrawal of $1500) would fail due to insufficient
funds, while the others can be processed.

Breaking Down the Solution

To solve the bank transaction problem, we must take a systematic approach. Here are the
steps involved:

1. Input Parsing: Read and parse the transaction data.
2. Transaction Processing: Iterate through the list of transactions and apply the necessary
logic to determine if each transaction is successful.
3. Balance Management: Keep track of the current balance after each transaction.
4. Output Generation: Prepare the output based on successful and failed transactions.

Input Parsing

Input parsing is crucial as it sets the stage for how we handle each transaction. The input
could come from various sources, such as a file, standard input, or API. Here's a simple
way to parse input in Python:

```python
def parse_input():
initial_balance = float(input("Enter initial balance: "))
num_transactions = int(input("Enter number of transactions: "))
transactions = []
for _ in range(num_transactions):
transaction = input("Enter transaction (format: type amount): ")
transactions.append(transaction.split())
return initial_balance, transactions
```

Transaction Processing

Once we have the input, the next step is to process each transaction. We can use a loop to
iterate through the transactions and apply the logic required to check if they can be
processed:

```python
def process_transactions(initial_balance, transactions):
current_balance = initial_balance
successful_transactions = []
failed_transactions = []



for transaction in transactions:
trans_type = transaction[0]
amount = float(transaction[1])

if trans_type == "Deposit":
current_balance += amount
successful_transactions.append(transaction)
elif trans_type == "Withdraw":
if current_balance >= amount:
current_balance -= amount
successful_transactions.append(transaction)
else:
failed_transactions.append(transaction)

return current_balance, successful_transactions, failed_transactions
```

Balance Management

Managing the balance is straightforward—after each transaction, update the
`current_balance` variable accordingly. It’s important to ensure that you handle edge
cases, such as negative balances or invalid transaction types.

```python
def print_summary(current_balance, successful_transactions, failed_transactions):
print(f"Final Balance: ${current_balance:.2f}")
print("Successful Transactions:")
for trans in successful_transactions:
print(f"{trans[0]}: ${trans[1]}")
print("Failed Transactions:")
for trans in failed_transactions:
print(f"{trans[0]}: ${trans[1]}")
```

Complexity Analysis

When analyzing the complexity of our approach, we can consider both time and space
complexity:

1. Time Complexity: The time complexity of this solution is O(n), where n is the number of
transactions. This is because we are iterating through each transaction exactly once.
2. Space Complexity: The space complexity is O(n) as well, due to the storage of successful
and failed transactions in separate lists.



Testing the Solution

Testing is a crucial part of software development. To ensure the correctness of our
solution, we should write test cases that cover various scenarios:

- Basic Functionality: Test with a mix of deposits and withdrawals.
- Edge Cases: Test with zero transactions, maximum withdrawals, and invalid transaction
types.
- Performance: Test with a large number of transactions to see if the performance remains
acceptable.

Here’s an example of a simple test case function:

```python
def test_bank_transaction():
initial_balance = 1000
transactions = [
("Deposit", 200),
("Withdraw", 1500),
("Withdraw", 500),
("Deposit", 300)
]

final_balance, successful, failed = process_transactions(initial_balance, transactions)

assert final_balance == 1000, "Final balance should be 1000"
assert len(successful) == 3, "Three transactions should be successful"
assert len(failed) == 1, "One transaction should fail"

test_bank_transaction()
```

Conclusion

The bank transaction hackerrank solution presents a fantastic opportunity for
programmers to hone their skills in algorithm design, data structure manipulation, and
debugging. By breaking down the problem into manageable parts, we can construct a
systematic solution that handles various transaction scenarios effectively.

As technology evolves, so do the challenges in finance and transaction management. Thus,
mastering such problems not only prepares developers for coding interviews but also
equips them with the necessary skills to tackle real-world banking applications.

In summary, understanding the mechanics of transaction management, developing
efficient algorithms, and ensuring robust testing are critical components of solving the
bank transaction problem. By following the outlined steps, anyone can develop a solution
that is both effective and efficient, paving the way for further exploration in the field of
financial technology.



Frequently Asked Questions

What is the 'bank transaction' problem in HackerRank?
The 'bank transaction' problem in HackerRank typically involves processing a list of
transactions to determine certain metrics such as the total amount of money transferred,
identifying fraudulent transactions, or calculating the final balance after a series of
deposits and withdrawals.

How do I approach solving the bank transaction
problem?
To solve the bank transaction problem, first, read and understand the problem statement.
Then, break down the requirements into smaller tasks, such as parsing the input,
processing each transaction, and calculating the required outputs.

What programming languages can I use to solve the
bank transaction problem on HackerRank?
You can use multiple programming languages to solve the bank transaction problem on
HackerRank, including Python, Java, C++, Ruby, and JavaScript, among others.

What are common algorithms used in bank transaction
problems?
Common algorithms include iteration for processing each transaction, conditionals for
checking transaction types (e.g., deposit or withdrawal), and aggregation techniques for
calculating totals or balances.

How can I handle large input sizes in the bank
transaction problem?
To handle large input sizes, ensure your solution has efficient time and space complexity.
Use data structures that allow for quick access and modifications, and consider using
algorithms that operate in linear time when possible.

What are some edge cases to consider in bank
transaction problems?
Edge cases to consider include transactions with negative amounts, extremely large
numbers, empty transaction lists, and cases where the balance goes below zero.

How can I test my solution for the bank transaction
problem?
You can test your solution by creating a variety of test cases that cover normal scenarios,
edge cases, and potential error conditions. Use both small and large datasets to ensure
the solution is robust.



What is a common mistake to avoid when solving bank
transaction problems?
A common mistake is not properly validating the input transactions, which can lead to
incorrect calculations or runtime errors. Always ensure that inputs conform to expected
formats and constraints.

How can I optimize my solution for the bank transaction
problem?
To optimize your solution, analyze the complexity of your algorithms, eliminate
unnecessary computations, and consider using more efficient data structures like hash
maps for storing transaction types and counts.

Where can I find additional resources or tutorials for
the bank transaction problem?
Additional resources can be found on coding platforms like LeetCode, GeeksforGeeks, and
Stack Overflow. You can also check HackerRank's discussion forums and blogs for
community insights and solutions.

Find other PDF article:
https://soc.up.edu.ph/34-flow/pdf?docid=GAO44-5213&title=jbl-charge-5-quick-start-guide.pdf

Bank Transaction Hackerrank Solution

THE IMPOSSIBLE QUIZ - Play Online for Free! | Poki
The Impossible Quiz is an online trivia quiz that features only very hard questions. Many of the
questions have …

Try not to get hard challange but it progressively gets more d…
uQuiz.com is a free online quiz making tool. Make quizzes, send them viral. Generate leads, increase
sales and …

Try Not To Get Hard | Quotev
Aug 16, 2015 · The ultimate quiz for all music lovers out there. Test your musical understanding by
completing this quiz …

Try not to get hard challenge - Gpop.io
Lagging? Disable animations here:

Extremely Difficult General Knowledge Quiz - BuzzFeed
May 23, 2022 · Remember, this quiz is supposed to be hard, but you might learn some interesting
bits of trivia!

https://soc.up.edu.ph/34-flow/pdf?docid=GAO44-5213&title=jbl-charge-5-quick-start-guide.pdf
https://soc.up.edu.ph/08-print/Book?title=bank-transaction-hackerrank-solution.pdf&trackid=vIY33-2191


Montréal, QC Current Weather - The Weather Network
Get Montréal, QC current weather report with temperature, feels like, wind, humidity, pressure, UV
and more from TheWeatherNetwork.com.

Montréal, QC 7 Days Weather - The Weather Network
See the Montréal, QC extended weather forecast including feels like temperature, wind gust and
chance of rain or snow from TheWeatherNetwork.com

Montréal, QC Hourly Forecast - The Weather Network
Get Montréal, QC current weather report with temperature, feels like, wind, humidity, pressure, UV
and more from TheWeatherNetwork.com.

Montréal, QC 14 Days Weather - The Weather Network
Montréal, QC temperature trend for the next 14 Days. Find daytime highs and nighttime lows from
TheWeatherNetwork.com.

Montréal's weather forecast for October 21 ... - The Weather …
Oct 21, 2024 · This article was generated with the use of OpenAI and The Weather Network's
forecast data. The article was reviewed by the editorial team for accuracy and clarity.

Montréal's weekend weather forecast: Sunny ... - The Weather …
Dec 6, 2024 · Sunday, December 8 Sunday brings a change in weather with snow expected
throughout the day. Temperatures will drop to -11°C, feeling like -17°C with the wind chill.

Montréal's weather forecast for November 13 ... - The Weather …
Nov 13, 2024 · Looking ahead to tomorrow, the weather will remain mainly sunny with a high of 4°C.
There will be six hours of sunshine, and no rain or snow is expected, making it another …

Tornado chance arises as eastern Ontario, Quebec sees severe …
Jul 16, 2025 · Forecasters are keeping a close eye on Thursday, with a low-pressure system and
strong cold front expected to bring more severe weather to eastern Ontario and southern …

Multi-day storm threat hits Quebec, risk creeps ... - The Weather …
Jun 10, 2025 · Storms may impact Montreal between 2-4 p.m. Initial threats include nickel-sized hail
and heavy rain, with strong wind gusts of over 80 km/h possible as storms move east …

Montréal's weather forecast for November 9 ... - The Weather …
Nov 9, 2024 · Weather Report for Today Expect a beautiful sunny day with clear skies throughout.

Unlock the secrets to mastering the Bank Transaction HackerRank solution! Discover how to
optimize your code and ace your next coding challenge. Learn more!

Back to Home

https://soc.up.edu.ph

